首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76757篇
  免费   960篇
  国内免费   1166篇
测绘学   2441篇
大气科学   5424篇
地球物理   14484篇
地质学   31702篇
海洋学   5624篇
天文学   13137篇
综合类   2254篇
自然地理   3817篇
  2022年   260篇
  2021年   449篇
  2020年   518篇
  2019年   601篇
  2018年   7262篇
  2017年   6519篇
  2016年   4508篇
  2015年   877篇
  2014年   1138篇
  2013年   1940篇
  2012年   2848篇
  2011年   5861篇
  2010年   5058篇
  2009年   5654篇
  2008年   4713篇
  2007年   5624篇
  2006年   1700篇
  2005年   1684篇
  2004年   1782篇
  2003年   1868篇
  2002年   1441篇
  2001年   949篇
  2000年   899篇
  1999年   745篇
  1998年   748篇
  1997年   735篇
  1996年   598篇
  1995年   579篇
  1994年   509篇
  1993年   465篇
  1992年   417篇
  1991年   428篇
  1990年   448篇
  1989年   399篇
  1988年   376篇
  1987年   402篇
  1986年   416篇
  1985年   512篇
  1984年   552篇
  1983年   549篇
  1982年   500篇
  1981年   476篇
  1980年   455篇
  1979年   414篇
  1978年   377篇
  1977年   383篇
  1976年   346篇
  1975年   356篇
  1974年   337篇
  1973年   369篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.  相似文献   
992.
The central magnetic field and rotation of the solar radiative zone are responsible for corrections to the g-mode frequencies. Magnetogravitational spectra are calculated analytically in a simple one-dimensional MHD model that goes beyond the WKB approximation and avoid any cusp resonances that trap the wave within the radiative zone in the presence of a weak magnetic background. The calculations are compared with spacecraft observations of the 1% frequency shifts for candidate g-modes found in the SOHO GOLF experiment. The magnetic correction is the main contribution for a strong magnetic field satisfying the approximation used. It is shown that a constant magnetic field of 700 kG in the radiative zone provides the required frequency shift for the n = ?10 g-mode. The rotational correction, which is due to the Coriolis force in the one-dimensional model used, is much less than a percent (αΩ ≤ 0.003).  相似文献   
993.
The EC funded Geochemical Seismic Zonation program (EEC GSZ Project 1996–1998) chose Sardinia as a low-seismicity site, in which the relationships between fluid geochemistry and seismo-tectonics had to be investigated and results compared with outcomes from other selected high-seismicity sites. A first article, examining the role of fault segmentation and seismic quiescence on the geochemical composition of groundwaters and gases, has already been presented (Angelone et al. 2005). This article deals with environmental isotopes which, together with selected hydrochemical data, give hints on tectonically-related fluid circulations. Four water-dominated hydrothermal systems were considered, all located along regional fault systems and discharging groundwaters belonging to the Na–HCO3 and Na–Cl facies. In the considered systems, groundwater circulation takes place, principally, in the Palaeozoic Crystalline Basement (PCB), with the exception of the Logudoro system, where hydrological circuits develop in the Mesozoic Carbonate Platform (MCP). The high CO2 contents, the non-attainment of fluid-rock equilibrium and the large lithological variability prevent the construction of a unique hydrogeological–geochemical conceptual model. In this case, stable isotopes provide a useful tool to describe the origin of fluids and their subterranean movements. Stable isotopes of water, integrated with hydrochemical data, indicate that fluids are derived from three main end members. The dominant component is a relatively recent local meteoric water; the second one is marine water; and the third one is a fossil freshwater, depleted in heavy isotopes with respect to modern rains. The latter end member entered the aquifer system in the past, when climatic conditions were greatly different from today. At least two circulation systems can be recognised, namely a shallow cold system and a deep hydrothermal system, as well as two distinct hydrological processes: (1) gravity-controlled descent of cold water towards greater depths and (2) convection linked to a thermal gradient, causing deep fluids to rise up from the hydrothermal reservoir towards the surface. The highly variable δ13CTDIC values suggest the presence of two distinct CO2 sources, namely, a biogenic one and a thermogenic one. The relation between the isotopic compositions of CO2 and He indicates an increased mantle signature in uprising CO2-rich fluids.  相似文献   
994.
This paper proposes a novel history-matching method where reservoir structure is inverted from dynamic fluid flow response. The proposed workflow consists of searching for models that match production history from a large set of prior structural model realizations. This prior set represents the reservoir structural uncertainty because of interpretation uncertainty on seismic sections. To make such a search effective, we introduce a parameter space defined with a “similarity distance” for accommodating this large set of realizations. The inverse solutions are found using a stochastic search method. Realistic reservoir examples are presented to prove the applicability of the proposed method.  相似文献   
995.
We simulate direct current (DC) borehole resistivity measurements acquired in steel-cased deviated wells for the assessment of rock formation properties. The assumed data acquisition configuration considers one current (emitter) and three voltage (collector) electrodes that are utilized to measure the second difference of the electric potential along the well trajectory. We assume a homogeneous, 1.27-cm-thick steel casing with resistivity equal to 10 − 5 Ω· m. Simulations are performed with two different numerical methodologies. The first one is based on transferring two-dimensional (2D) axisymmetric optimal grids to a three-dimensional (3D) simulation software. The second one automatically produces optimal 3D grids yielded by a 3D self-adaptive goal-oriented algorithm. Both methodologies utilize high-order finite elements (FE) that are specially well-suited for problems with high-contrast coefficients and rapid spatial variations of the electric field, as it occurs in simulations that involve steel-cased wells. The method based on transferring 2D-optimal grids is efficient in terms of CPU time (few seconds per logging position). Unfortunately, it may produce inaccurate 3D simulations in deviated wells, even though the error remains below 1% for the axisymmetric (vertical) well. The method based on optimal 3D grids, although less efficient in terms of CPU time (few hours per logging position), produces more accurate results that are validated by a built-in a posteriori error estimator. This paper provides the first existing simulations of through-casing resistivity measurements in deviated wells. Simulated resistivity measurements indicate that, for a 30° deviated well, measurements in conductive layers 0.01 Ω· m) are similar to those obtained in vertical wells. However, in resistive layers (10,000 Ω· m), we observe 100% larger readings in the 30° deviated well. This difference becomes 3,000% for the case of a 60° deviated well. For this highly-deviated well, readings corresponding to the conductive formation layer are about 30% smaller in magnitude than those in a vertical well. Shoulder effects significantly vary in deviated wells.  相似文献   
996.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   
997.
A multi-lithology diffusive stratigraphic model is considered, which simulates at large scales in space and time the infill of sedimentary basins governed by the interaction between tectonics displacements, eustatic variations, sediment supply, and sediment transport laws. The model accounts for the mass conservation of each sediment lithology resulting in a mixed parabolic, hyperbolic system of partial differential equations (PDEs) for the lithology concentrations and the sediment thickness. It also takes into account a limit on the rock alteration velocity modeled as a unilaterality constraint. To obtain a robust, fast, and accurate simulation, fully and semi-implicit finite volume discre tization schemes are derived for which the existence of stable solutions is proved. Then, the set of nonlinear equations is solved using a Newton algorithm adapted to the unilaterality constraint, and preconditioning strategies are defined for the solution of the linear system at each Newton iteration. They are based on an algebraic approximate decoupling of the sediment thickness and the concentration variables as well as on a proper preconditioning of each variable. These algorithms are studied and compared in terms of robustness, scalability, and efficiency on two real basin test cases.  相似文献   
998.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   
999.
Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. δ18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration.  相似文献   
1000.
In semi-arid climates, phreatophytes draw on shallow aquifers, and groundwater evapotranspiration (ETG) is a principal component of groundwater budgets. Diurnal water table fluctuations, which often are a product of ETG, were monitored in the riparian zone of Red Canyon Creek, Wyoming, USA. These fluctuations were higher in a riparian wetland (2–36 mm) than a grass-covered meadow (1–6 mm). The onset and cessation of water-table fluctuations correspond to daily temperatures relative to freezing. Spatial differences were due to vegetation type and specific yield, while temporal changes were due to vegetation dormancy. Ratios of ETG to potential evapotranspiration (PET), K c,GW, were similar to ratios of actual evapotranspiration (ET) to PET, K c, in semi-arid rangelands. Before vegetation senescence, K c,GW increased between precipitation events, suggesting phreatophytes pull more water from the saturated zone as soil moisture decreases. In contrast, K c decreases with soil moisture following precipitation events as ET becomes increasingly water-limited. Error in ETG is primarily from estimates of specific yield (S y), which is difficult to quantify in heterogeneous sediments. ETG values may be more reliable because the range of acceptable S y is smaller than K c and S y does not change with vegetation type or soil moisture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号