首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1421篇
  免费   90篇
  国内免费   34篇
测绘学   52篇
大气科学   133篇
地球物理   326篇
地质学   521篇
海洋学   108篇
天文学   261篇
综合类   3篇
自然地理   141篇
  2023年   3篇
  2022年   7篇
  2021年   27篇
  2020年   38篇
  2019年   46篇
  2018年   58篇
  2017年   46篇
  2016年   56篇
  2015年   57篇
  2014年   42篇
  2013年   103篇
  2012年   74篇
  2011年   81篇
  2010年   63篇
  2009年   81篇
  2008年   84篇
  2007年   73篇
  2006年   71篇
  2005年   46篇
  2004年   58篇
  2003年   65篇
  2002年   44篇
  2001年   28篇
  2000年   33篇
  1999年   17篇
  1998年   17篇
  1997年   19篇
  1996年   18篇
  1995年   14篇
  1994年   14篇
  1993年   13篇
  1992年   13篇
  1991年   6篇
  1990年   13篇
  1989年   10篇
  1988年   7篇
  1987年   5篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   12篇
  1978年   8篇
  1976年   6篇
  1975年   6篇
  1973年   5篇
  1972年   4篇
  1971年   5篇
排序方式: 共有1545条查询结果,搜索用时 109 毫秒
31.
经过详细的野外地质勘查、热液蚀变及蚀变矿物学研究,流体包裹体和同位素研究,首次将西天山京希-伊尔曼德金矿床确定为高硫化型浅成低温热液金矿床。该矿床的主要识别标志为:发育以多孔状石英为特征的硅化蚀变带和高级泥化蚀变带;成矿流体性质为低盐度[W(NaCl)为0.3-4.2%]、低pH值(3-4)和高氧化态;氧同位素δ(^18O)为1.7 ‰-4.3‰,δ(D)为-60‰--80‰。金主要富集在高级泥化带和中心硅化蚀变带内。系统研究和总结了成矿地质-地球化学制约因素以及区域、靶区和勘探区尺度的找矿标志。  相似文献   
32.
33.
34.
Editorial: Putting philosophies of geography into practice   总被引:1,自引:1,他引:1  
  相似文献   
35.
36.
Water and sediment outbursts from advanced Franz Josef Glacier,New Zealand   总被引:1,自引:0,他引:1  
The Franz Josef Glacier, Westland, New Zealand, has a history of catastrophic sediment‐laden outburst ?oods associated with extreme rainfall events when the glacier toe is advanced over its own sediments. Consideration of these events and inspection of recent sediment deposits suggest that there are three distinct modes of outburst. The ?rst is associated with fans fed by over?ow along the glacier margin. As the glacier has advanced across its own fore?eld gravels, it is inferred that the primary drainage conduit has developed a reach of negative slope. In high ?ows massive boulders can block the conduit, trapping lesser clasts. The resulting backup of water causes over?ows through marginal moulins, producing the fan type of deposit. The second type of outburst deposits massive imbricated boulders at a greater or lesser distance from the glacier portal. In this case, pressure buildup drives the blockage out of the portal where the boulders deposit. Smaller materials are generally carried away. The third type consists of very shallow ?ows, and produces massive gravel deposits of uncertain provenance. In this condition, the excess pressure in the conduit results in slight uplift of the glacier and widespread discharge of water and sediment below the glacier snout; gravels and smaller sediments are laid down in a massive deposit across the fore?eld. The massive, boulder‐veneered deposit from the December 1995 outburst is interpreted in the light of the above mechanisms as a hyperconcentrated ?ow deposit from hydraulic jacking, overlain by boulders emplaced by a subsequent conduit outburst. A possible association of outbursts with the present advanced position of the glacier is suggested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
37.
The concentrations of Rare Earth Elements (REE) and Redox Sensitive Elements (RSE) were measured in groundwaters along a transect of the forest-marsh interface of a surficial aquifer system in North Inlet, SC. The well transect extended from a forest recharge area across the marsh and tidal creek to a tidal recharge area of beach ridge. The concentrations of the RSE (Fe, Mn, and U) were consistent with reducing conditions through the transect. Fe was present at concentrations ranging from a few micromolar to greater than one hundred micromolar in most wells. U was depleted with respect to salinity predicted concentrations, indicating removal with respect to the seawater endmember. Dissolved Mn concentrations were generally low in all wells, indicating no significant solid source of Mn (as MnOx) in this system. When extrapolated to a global scale, estimates of U removal during seawater exchange with the aquifer solids equaled 10–20% of the total riverine dissolved U input flux. REE concentrations in the forest recharge area were high in shallow wells, and showed a light enriched fractionation pattern, characteristic of soil leaching by Natural Organic Matter (NOM) rich waters. A decrease in REE concentration with depth in the forest wells coupled with a trend towards Heavy REE (HREE) enriched fractionation pattern indicated removal of the REE coincident with NOM and Dissolved Organic Carbon (DOC) removal. The saline waters of the beach ridge wells show a Light REE (LREE) enriched fractionation pattern and have the highest overall concentrations of the REE, indicating a significant REE source to the seawater endmember waters. The concentration gradients along the beach ridge flow path indicate a large source in the deep wells, and net export of dissolved REE to the tidal creek system and the coastal ocean. Ultrafiltration experiments indicate a transition from a colloidal dominated reservoir for the REE in the forest wells to a colloidal and dissolved reservoir in the beach ridge wells. The ultrafiltration data coupled with a correlation with Dissolved Inorganic Carbon (DIC) release suggest that there is diagenetic mobilization of an REE rich organic carbon phase in the saline endmember wells. We suggest here that degradation of this relic terrestrial organic carbon and REE rich phase results in the export of dissolved REE equal to or exceeding river inputs in this region.  相似文献   
38.
The dramatic diversification of animal groups known as the Cambrian Explosion (evolution's ‘Big Bang’) remains an unsolved puzzle in Earth Science. The Vendian–Cambrian interval is characterized by anomalously high rates of apparent plate motion, interpreted as True Polar Wander (TPW), and by more than a dozen large, high-frequency perturbations in carbon isotopes that dwarf all others observed through the past 65 million years. We suggest that these biological, tectonic, and geochemical events are intimately related in the following fashion. First, tropical continental margins and shelf-slopes which formed during fragmentation of the supercontinent Rodinia accumulated massive quantities of isotopically-light organic carbon during Late Neoproterozoic time, as indicated by strikingly heavy isotope ratios in inorganic carbon during interglacial intervals. Second, an initial phase of Vendian TPW moved these organic-rich deposits to high latitude, where conditions favored trapping biogenic methane in layers of gas hydrate and perhaps permafrost. Continued sedimentation during Late Vendian time added additional hydrate/gas storage volume and stabilized underlying units until the geothermal gradient moved them out of the clathrate stability field, building up deep reservoirs of highly pressurized methane. Finally, a burst of TPW brought these deposits back to the Tropics, where they gradually warmed and were subjected to regional-scale thermohaline eddy variation and related sedimentation regime changes. Responding to the stochastic character of such changes, each reservoir reached a critical failure point independently at times throughout the Cambrian. By analogy with the Late Paleocene Thermal Maximum event, these methane deposits yield transient, greenhouse-induced pulses of global warming when they erupt. Temperature correlates powerfully with biodiversity; the biochemical kinetics of metabolism at higher temperature decrease generation time and maintain relatively rich and dense invertebrate populations. Repeated thermal pulses along with progressive disruption and alteration of global ocean circulation patterns by TPW could cause the increase in diversity that accompanied the radiation of metazoans. We suggest that a methane ‘fuse’ ignited the Cambrian Evolutionary Explosion.  相似文献   
39.
Large carbon dioxide plumes with concentrations up to 45 ppm aboveambient levels were measured about 15 km downwind of the Prudhoe Bay, Alaskamajor oil production facilities, located at 70° N Lat. above the ArcticCircle. The measured emissions were 1.3 × 103 metrictons (C) hour-1 (11.4× 106 metric tons(C) year-1), six times greater than the combustion emissionsassumed by Jaffe and coworkers in J. Atmos. Chem. 20 (1995), 213–227,based on 1989 reported Prudhoe Bay oil facility fuel consumption data, andfour times greater than the total C emissions reported by the oil facilitiesfor the same months as the measurement time periods. Variations in theemissions were estimated by extrapolating the observed emissions at a singlealtitude for all tundra research transect flights conducted downwind of theoil fields. These 30 flights yielded an average emission rate of1.02 × 103 metric tons (C) hour-1 with astandard deviation of 0.33 × 103. These quantity ofemissions are roughly equivalent to the carbon dioxide emissions of7–10 million hectares of arctic tussock tundra (Oechel and Vourlitis,Trends in Ecol. Evolution 9 (1994), 324–329).  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号