首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
地球物理   4篇
地质学   25篇
海洋学   7篇
天文学   5篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
41.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   
42.
Quantitative evaluation of the spatial distribution of the erosion risk in any watershed or ecosystem is one of the most important tools for environmentalists, conservationists and engineers to plan natural resource management for the sustainable environment in a long term. This study was performed in the semi-arid catchment of the Saraykoy II Irrigation Dam, Cankiri, located in the transition zone between the Central Anatolia Steppe and the Black Sea Forests of Turkey. The total area of the catchment is 262.31 ha. The principal objectives were to quantify both potential and actual soil erosion risks by the Revised Universal Soil Loss Equation (RUSLE) and to estimate the amount of sediments to be delivered from the hillslope of the catchment to the reservoir of the dam using the sediment delivery ratio (SDR) in combination with the RUSLE model. All factor and sub-factor calculations required for solving the RUSLE model and SDR in the catchment were made spatially using DEM, GIS and Geostatistics. As the main catchment was divided into twenty-five sub-catchments, the predicted actual soil loss (by the model) was 146,657.52 m3 year?1 and the weighted average of SDR estimated by areal distribution (%) of the sub-watersheds was 0.344 for whole catchment, resulted in 50,450.19 m3 year?1 sediment arriving to the reservoir. Since the Dam has a total storage capacity of 509 × 103 m3, the life expectancy of the Dam is estimated as 10.09 year. This estimation indicated that the dam has a relatively short economic life and there is a need for water-catchment management and soil conservation measures to reduce erosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号