首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   2篇
大气科学   1篇
地球物理   30篇
地质学   72篇
海洋学   25篇
天文学   6篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   10篇
  2013年   6篇
  2012年   2篇
  2011年   11篇
  2010年   8篇
  2009年   11篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   5篇
  1989年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有139条查询结果,搜索用时 562 毫秒
101.
Melting relations of primitive peridotite were studied up to 25 GPa. The change of the liquidus phase from olivine to majorite occurs at 16 GPa. We confirmed the density crossover of the FeO-rich peridotite melt and the equilibrium olivine (Fo90) at 7 GPa. Sinking of equilibrium olivine (Fo95) in the primitive peridotite melt was observed up to 10 GPa. The compression curves of FeO-rich peridotitic and komatiite melts reported in this and earlier work suggest that the density crossover in the Earth's mantle will be located at 11–12 GPa at 2000°C, consistent with an previous estimation by C.B. Agee and D. Walker.

The density crossover can play a key role in the Moon and the terrestrial planets, such as the Earth, Venus and Mars. Majorite and some fraction of melt could have separated from the ascending diapir and sunk downwards at the depths below the density crossover. This process could have produced a garnet-rich transition zone in the Earth's mantle. The density crossover may exist in the FeO-rich lunar mantle at around the center of the Moon. The density crossover which exists at the depth of 600 km in the Martian mantle plays a key role in producing a fractionated mantle, which is the source the parent magmas of the SNC meteorites.  相似文献   

102.
An analysis of the textures of pallasites has been made using data concerning the kinetic and rheological properties of silicates and metals. Pallasites containing rounded olivines (e.g., the Springwater and Brehnam pallasites) have been heated to above the solidus temperature of the metallic iron phases, ~ 1270 K. The rounded olivines of grain size 0.5–1.0 cm observed in the Springwater pallasites were formed between 1270 and 1370 K. On the other hand, those of grain size 0.5–1.0 mm as found in the Brehnam pallasites may have been heated to above 1370 K; however, the duration of heating at such high temperatures must have been less than 5 × 103 y. Pallasites containing angular olivines with microscopically rounded corners (e.g., the Eagle Station, Dora pallasites) have suffered shock events fracturing the olivine grains, which may correspond to collisions during the accretional stage of the parent body, and experienced successive annealing during cooling from a temperature between 1150 and 1270 K.  相似文献   
103.
Pressure effects on the lattice parameters of β- and γ-Mg2SiO4 have been measured at room temperature and at pressures up to 100 kbar using a multi-anvil high-pressure X-ray diffraction apparatus. The volume changes (ΔV/V0) at 90 kbar are 5.4 · 10?2 and 4.2 · 10?2 for β- and γ-Mg2SiO4, respectively. Isothermal bulk moduli at zero pressure have been calculated from least-square fits of the data to straight lines. They turn out to be 1.66 ± 0.4 and 2.13 ± 0.1 Mbar for β- and γ-Mg2SiO4, respectively. The α → γ transition obeys Wang's linear Vφ?ρ relation but the αβ transition does not.  相似文献   
104.
105.
106.
A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth’s surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si–OH) that led to the formation of a new Si–O–Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.  相似文献   
107.
We have determined phase relations in the Fe-O and Fe-O-S systems in the range of 15-21 GPa and 1825-2300 °C. Below the liquidus temperatures, solid FeO and metallic liquids are observed in both the Fe-O and the Fe-O-S systems. An immiscible two-liquid region exists in the Fe-O binary system in the pressure range investigated, and the immiscibility gap between Fe-rich metallic liquid and FeO-rich ionic liquid does not greatly change with either pressure or temperature. On the other hand, an immiscible two-liquid region in the Fe-O-S ternary system narrows significantly with increasing pressure at constant temperature and vice versa, and it almost disappears at 21 GPa, and 2300 °C. Immiscible two-liquid regions are thus not expected to exist in the Fe-O-S system in the Earth's core, suggesting that both oxygen and sulfur can be incorporated into the core. Our results are consistent with a geochemical model for the core containing 5.8 wt.% oxygen and 1.9 wt.% sulfur as proposed by McDonough and Sun [McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253].  相似文献   
108.
The Earth’s core contains light elements and their identification is essential for our understanding of the thermal structure and convection in the core that drives the geodynamo and heat flow from the core to the mantle. Solubilities of Si and O in liquid iron coexisting with (Mg,Fe)SiO3-perovskite, a major constituent of the lower mantle, were investigated at temperatures between 2,320 and 3,040 K at 27 GPa. It was observed that Si dissolved in the liquid iron up to 1.70 wt% at 3,040 K and O dissolved in the liquid iron up to 7.5 wt% at 2,800 K. It was also clearly seen that liquid iron reacts with (Mg,Fe)SiO3-perovskite to form magnesiowüstite and it contains Si and O at 27 GPa and at 2,640 and 3,040 K. The amounts of Si and O in the liquid iron are 1.70 and 2.25 wt% at 3,040 K, respectively. The solubilities of Si and O in liquid iron coexisting with (Mg,Fe)SiO3-perovskite have strong positive temperature dependency. Hence, they can be plausible candidates for the light elements in the core.  相似文献   
109.
110.
The Hirabayashi borehole (Awaji Island, Japan) was drilled by the Geological Survey of Japan (GSJ) 1 year after the Hyogo-ken Nanbu (Kobe) earthquake (1995, MJMA=7.2). This has enabled scientists to study the complete sequence of deformation across the active Nojima fault, from undeformed granodiorite to the fault core. In the fault core, different types of gouge and fractures have been observed and can be interpreted in terms of a complex history of faulting and fluid circulation. Above the fault core and within the hanging wall, compacted cataclasites and gouge are cut by fractures which show high apparent porosity and are filled by 5–50 μm euhedral and zoned siderite and ankerite crystals. These carbonate-filled fractures have been observed within a 5.5-m-wide zone above the fault, but are especially abundant in the vicinity (1 m) of the fault. The log-normal crystal size distributions of the siderite and ankerite suggest that they originated by decaying-rate nucleation accompanied by surface-controlled growth in a fluid saturated with respect to these carbonates. These carbonate-filled fractures are interpreted as the result of co-seismic hydraulic fracturing and upward circulation of fluids in the hanging wall of the fault, with the fast nucleation of carbonates attributed to a sudden fluid or CO2 partial pressure drop due to fracturing. The fractures cut almost all visible structures at a thin section scale, although in some places, the original idiomorphic shape of carbonates is modified by a pressure-solution mechanism or the carbonate-filled fractures are cut and brecciated by very thin gouge zones; these features are attributed to low and high strain-rate mechanisms, respectively. The composition of the present-day groundwater is at near equilibrium or slightly oversaturated with respect to the siderite, calcite, dolomite and rhodochrosite. Taken together, this suggests that these fractures formed very late in the evolution of the fault zone, and may be induced by co-seismic hydraulic fracturing and circulation of a fluid with a similar composition to the present-day groundwater. They are therefore potentially related to recent earthquake activity (<1.2 Ma) on the Nojima fault.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号