首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   13篇
  国内免费   5篇
测绘学   3篇
大气科学   30篇
地球物理   89篇
地质学   113篇
海洋学   70篇
天文学   53篇
自然地理   12篇
  2024年   1篇
  2023年   2篇
  2021年   7篇
  2020年   11篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   16篇
  2015年   12篇
  2014年   16篇
  2013年   11篇
  2012年   12篇
  2011年   20篇
  2010年   20篇
  2009年   14篇
  2008年   26篇
  2007年   15篇
  2006年   17篇
  2005年   11篇
  2004年   15篇
  2003年   10篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
排序方式: 共有370条查询结果,搜索用时 859 毫秒
11.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
12.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   
13.
138Ce/142Ce isotope ratios in Cenozoic island arc volcanic rocks are reported for the first time, together with isotope ratios of Nd and Sr and abundances of REE, Ba and Sr. The island arc volcanics studies here are boninites from Chichijima, the Bonin Islands, and basalts and andesites from the Solomon Islands. REE patterns of the island arc volcanic rocks from the Solmon Islands and the Bonin Islands are confirmed to have negative Ce anomalies. It is also disclosed that the majority of these island arc volcanic rocks show mainly positive values for both Ce and Nd. It is shown that these Ce and Ce values can hardly be interpreted by simple mixing between MORB and oceanic or continental crustal rocks; the former have positive Nd and negative Ce and the latter have negative Ce and positive or negative Nd. Existence of sources having positive Ce and Nd values is strongly suggested. If the sources are assumed to have been fractionated from CHUR (chondritic uniform reservoir) at the early or middle Precambrian era, the sources from which the volcanics were derived are concluded to have kept concave REE patterns with larger (La/Ce)N and smaller (Nd/Sm)N ratios than chondritic values over a substantial period of time, until the time of Cenozoic magmatism forming island arc volcanic rocks in question. During the periods of the Cenozoic magmatic activities and their related events, Ce anomalies are considered to have been created. From Ce and Nd isotope ratios, however, it is difficult to determine which of the following processes was responsible for the Ce anomaly; the incorporation process of subducted oceanic crust into magma at the mantle or the slab dehydration and metasomatism process. Nevertheless, so far as Ce and Nd isotopic ratios are concerned, incorporation of oceanic sediments did not take place to any clearly detectable degree.  相似文献   
14.
Abstract. Near-infrared (NIR) and visible light microthermometry was applied to the fluid inclusions in sphalerite from a possible southeast extension of the Toyoha polymetallic deposit. Sphalerite occurs as euhedral-subhedral crystals or collo-form aggregates with a variety of color, which contain a well-developed growth banding. Combined with morphological observations, fluid inclusions in dark-colored sphalerite were examined using a near-infrared light microscopic technique, whereas those in light-colored sphalerite and quartz were examined by a conventional visible light microscopy.
Salinities of fluid inclusions in dark-colored sphalerite have a wide variation (1.0–10.3 wt % NaCl equiv.) compared to that in light-colored sphalerite and quartz (0.0–3.4 wt % NaCl equiv.). These variations suggest that the conventional microthermometric data from light-colored sphalerite and quartz were inadequate to interpret the ore formation process. Dark-colored colloform sphalerite and a dark core of subhedral sphalerite formed from high-salinity fluids (6.5–10.3 wt % NaCl equiv.) under highly supersaturated conditions with respect to sphalerite.
The NIR and visible light microthermometry of fluid inclusions in sphalerite combined with its morphological observations is an invaluable method to infer the formation conditions of sphalerite. The NIR and visible light microthermometry is useful to reveal how the nature of ore fluids changed with time.  相似文献   
15.
16.
Microcracks in the Cretaceous Ryoke-type granite in Japan were investigated by using deep drilling core samples collected in the Mizunami Underground Research Project of the Japan Nuclear Cycle Development Institute (JNC). The granite body suffered brittle deformation associated with Tertiary thrust movement. Based on core-scale and microscopic deformation features, the drill core from a depth of 300 to 700 m is divided into four domains, i.e. (A) undeformed granite, (B) granite intruded by cataclastic seams, (C) fractured granite in the fault damage zone, and (D) foliated cataclasite at the fault center. To characterize microcrack geometries in each domain, we employed the impregnation method using a low-viscous acrylic resin doped with fluorescent agents and captured the microcrack images by confocal laser scanning microscopy (CLSM). The CLSM image in the fault damage zone revealed anisotropic development of microcrack networks related to the fault movement. Both CLSM observation and porosity measurements reveal a drastic increase of micro-pores in the foliated cataclasite, possibly caused by fragmentation, and granulation and crack sealing in the fault zone.  相似文献   
17.
18.
19.
Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth’s crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure–volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P–T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate–sulfide speciation may play a major role in the sulfur recycling into the deep Earth.  相似文献   
20.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号