首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   13篇
  国内免费   5篇
测绘学   3篇
大气科学   30篇
地球物理   89篇
地质学   113篇
海洋学   70篇
天文学   53篇
自然地理   12篇
  2024年   1篇
  2023年   2篇
  2021年   7篇
  2020年   11篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   16篇
  2015年   12篇
  2014年   16篇
  2013年   11篇
  2012年   12篇
  2011年   20篇
  2010年   20篇
  2009年   14篇
  2008年   26篇
  2007年   15篇
  2006年   17篇
  2005年   11篇
  2004年   15篇
  2003年   10篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
111.
This article examined long-term effects of using navigation tools on wayfinding and spatial orientation, through a survey analysis of the experience of using navigation tools and spatial aptitudes, and a behavioral experiment of real-world navigation. Experience of tool use was measured in terms of regular use (time length and frequency) and accumulated experience (time length multiplied by frequency). The survey analysis showed that frequent users of pedestrian navigation systems tended to be low on sense of direction and mental rotation. In contrast, longtime users of maps tended to be high on sense of direction and favor survey navigation strategies. The behavioral experiment showed that people who had more accumulated experience of using in-car navigation systems traveled less efficiently and learned the configurations of traveled routes less accurately with a mobile tool and a paper map. The analysis of long-term effects through structural equation modeling showed that spatial aptitudes and accumulated experience of tool use independently affect wayfinding and spatial orientation and that the negative effects of accumulated experience were larger than the positive effects of spatial aptitudes. The results and implications are discussed in relation to existing studies of short-term effects and spatial thinking.  相似文献   
112.
Basalt in the Furutobe District of the Kuroko mine area in Japan is characterized by abundant chlorite and epidote. Fluid inclusion studies indicate that chlorite is formed at lower temperatures (230–250°C) than epidote (250–280°C). The seawater/basalt mass ratio for the early chlorite-rich alteration was high (max. 40), but that for the later alteration was low (0.1–1.8). The CaO, Na2O and SiO2 of the bulk rock correlate negatively with MgO, while FeO and Σ Fe correlate positively with MgO. These changes in the characteristic features of hydrothermal alteration from early to late are generally similar to those for a mid-ocean ridge geothermal system accompanying basalt alteration.The MgO/FeO ratios of chlorite and actinolite and the Fe2O3 concentration of epidote from the basalt are greater than those of mid-ocean ridge basalt probably owing to the differences in the Fe2O3/FeO and MgO/FeO ratios of the parent rocks. The lower CaO concentration and the higher Na2O concentration of the bulk rock compared with altered mid-ocean ridge basalt can be interpreted in terms of the difference in original bulk rock compositions.The Furutobe basalt, as well as other submarine back arc basalts, contains more vesicles filled with hydrothermal minerals (epidote, calcite, quartz, chlorite, pyrite) than do the mid-ocean ridge basalts. The abundance of vesicles plays an important role in controlling the secondary mineralogy and geochemistry of hydrothermally altered submarine back arc basin basalts.  相似文献   
113.
The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-\({\upalpha }\) line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration.  相似文献   
114.
Miyazawa  Yasumasa  Yaremchuk  Max  Varlamov  Sergey M.  Miyama  Toru  Aoki  Kunihiro 《Ocean Dynamics》2020,70(8):1129-1149
Ocean Dynamics - Operational ocean nowcast/forecast systems require real-time sampling of oceanic data for representing realistic oceanic conditions. Satellite altimetry plays a key role in...  相似文献   
115.
A sustained dynamic inflow perturbation and bar–floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
116.
117.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   
118.
CO2 ocean sequestration may be an effective option for mitigating global warming. There are risks associated with this process, particularly the local impact on deep-sea environments. Public acceptance is required for the implementation of this technology, even though the impacts have been proven to be trivial. In this study, a questionnaire survey was conducted to find the correlation between public acceptance of CO2 sequestration and influential factors by covariance structure analysis. In addition, risk communication via the Internet was carried out. These analyses revealed that careful investigation of the target oceanic site and field experiments are important in gaining public acceptance of CO2 sequestration.  相似文献   
119.
120.
In order to specify a vertical thermal structure related to surface current variation on the continental slope in Tosa Bay, Japan, we analyzed monthly regular hydrographic measurements in the years 1991–2004. Subsurface temperature below 200 m on the slope was found to vary synchronously with the vertical displacement of the main thermocline around 200 m. It is shown that the vertical-averaged temperature below 200 m is significantly correlated with an along-isobath/southwestward surface current velocity on the slope. This correlation indicates that when a strong (weak) southwestward surface current is observed, temperature below 200 m decreases (increases) simultaneously, that is, isotherms below the 200 m are displaced upward (downward) together with the main thermocline. Moreover, when the strong southwestward flow is detected, across-isobath isotherms around 200 m slope upward toward the offshore direction. Furthermore, it is suggested that as the Kuroshio axis moves offshore south of the bay, the southwestward flow tends to be weakened by the combined effect of other Kuroshio parameters such as transport and stream width as well as the Kuroshio axis position. As a result, it is inferred that the correlation between the surface current and subsurface temperature can be interpreted in terms of the formation and decay of an anticlockwise circulation interacting with a cold eddy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号