首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   25篇
  国内免费   20篇
测绘学   18篇
大气科学   62篇
地球物理   186篇
地质学   256篇
海洋学   74篇
天文学   34篇
综合类   6篇
自然地理   28篇
  2023年   3篇
  2022年   10篇
  2021年   29篇
  2020年   20篇
  2019年   17篇
  2018年   27篇
  2017年   30篇
  2016年   30篇
  2015年   20篇
  2014年   35篇
  2013年   60篇
  2012年   35篇
  2011年   35篇
  2010年   29篇
  2009年   32篇
  2008年   32篇
  2007年   17篇
  2006年   18篇
  2005年   16篇
  2004年   16篇
  2003年   23篇
  2002年   13篇
  2001年   8篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   11篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   9篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有664条查询结果,搜索用时 15 毫秒
591.
Spatial variability of material properties is inherent in both natural soil deposits and earth structures, yet it is often ignored during geotechnical design. With the objective of developing novel methods for assessing the effects of soil variability on groundwater flow, this study presents a stochastic finite element model of seepage through a flood defense embankment with randomly heterogeneous material properties. Stochastic modeling is undertaken by means of a Monte Carlo simulation which involves a large number of finite element analyses, each with randomly varied porosity at element level, which leads to a corresponding random variation of both permeability and water retention properties across the embankment domain. This provides a statistical distribution of responses, such as total flow rate and time to reach steady state, instead of a single deterministic result as in conventional studies of seepage through unsaturated heterogeneous soils. As the degree of heterogeneity increases, water tends to flow along the most permeable paths inside the soil mass, resulting in an irregular shape of the predicted wetting fronts and pore pressure contours. The mean and standard deviation of the computed quantities strongly depend on the statistics of the input porosity field. Simulations are also conducted to compare the statistical variation of flow rate with and without dependency of the water retention curve on porosity. With recent growth in computer speed, stochastic finite element models based on the Monte Carlo approach can become a powerful design tool, especially if a quantitative assessment of geotechnical risks is required. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
592.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   
593.
594.
The variation of the fine-structure constant α = e 2 / ħc can be probed by comparing the wavelength of atomic transitions from the redshift of quasars in the Universe and laboratory over cosmological time scales t ~ 1010 yr. After a careful selection of pairs of lines, the Thong method with a derived analytical expression for the error analysis was applied to compute the α variation. We report a new constraint on the variation of the fine-structure constant based on the analysis of the CIV, NV, MgII, AlIII, and SiIV doublet absorption lines. The weighted mean value of the variation in α derived from our analysis over the redshift range 0.4939 ≤ z ≤ 3.7 is = ( 0.09 ± 0.07)×10−5. This result is three orders of magnitude better than the results obtained by earlier analysis of the same data on the constraint on Δα/α .  相似文献   
595.
Kwon  Yong Min  Bae  Seung Sub  Choi  Grace  Lim  Ji Yeon  Jung  Yoon-Hee  Chung  Dawoon 《Ocean Science Journal》2021,56(1):1-17
Ocean Science Journal - Studies on marine fungi (termed as ‘marine-derived fungi’ in this paper) have been significantly increasing worldwide because of the critical role displayed by...  相似文献   
596.
Selective fine particle separation is a key unit operation in the mineral and related industries. In flotation, the capture of fine particles by bubbles is inefficient due to their low mass and momentum, which result in low particle–bubble collision efficiency. We demonstrate that it is possible to selectively separate a mixture of very fine hydrophobic graphite and hydrophilic quartz particles by direct contact with an air–water interface without a particle–bubble collision step involved. We demonstrate that it is possible to scale-up the process from a simple batch to a continuous process. Good selective separation of graphite from quartz gangue could be obtained under continuous conditions.  相似文献   
597.
Study of the chemical composition of clinopyroxene and garnet megacrysts from the Dak Nong sapphire deposit and model calculations have shown that megacrysts originated from the crystallization of alkali basaltoid magma in a deep-seated intermediate chamber at 14–15 kbar, which is close to the Moho depth (50 km) in this part of southeastern Asia. The chamber was a source of heat and CO2 fluids for the generation of crustal syenitic melts producing sapphires and zircons. The formation conditions of sapphires and zircons are significantly different. The presence of jadeite inclusions in placer zircons points to high pressures during their crystallization, which is confirmed by the ubiquitous decrepitation of CO2-rich melt inclusions. Sapphires crystallized from iron-rich syenitic melt in the shallower Earth’s crust horizons with the participation of CO2 and carbonate–H2O–CO2 fluids. The subsequent eruptions of alkali basalts favored the transportation of garnet and pyroxene megacrysts as well as sapphire and zircon xenocrysts to the surface. It is shown that sapphire deposits can be produced only during multistage basaltic volcanism with deep-seated intermediate chambers in the regions with thick continental crust. The widespread megacryst mineral assemblage (clinopyroxene, garnet, sanidine, ilmenite) and the presence of placer zircon megacrysts can be used as indicators for sapphire prospecting.  相似文献   
598.
A method of estimating groundwater recharge, based on water-balance components using the SWAT-MODFLOW model (an integrated surface water-groundwater model), is described. A multi-reservoir storage routing module is suggested instead of a single storage routing module in SWAT; this represents a more realistic delay in the travel of water through the vadose zone. By using this module, the parameter related to the delay time can be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater levels as well as the simulated watershed stream flow with the observed groundwater levels and watershed stream flow. This method is applied to the Mihocheon watershed in South Korea to estimate spatio-temporal groundwater recharge distribution. The computed annual recharge rate is compared with the independently estimated recharge rate using BFLOW. The hydrologic modelling results show that the annual average recharge rate should be estimated by a long-term continuous simulation with a distributed hydrologic modelling technique.  相似文献   
599.
The occurrence of Genus Anisakis nematode larvae in marine fishes and cephalopods is epidemiologically important because Anisakis simplex larval stage can cause a clinical disease in humans when infected hosts are consumed raw. Common squid (Todarodes pacificus) from Korean waters were investigated for anisakid nematodes infection during 2009~2011. In total, 1,556 larvae were collected from 615 common squids and 732 of them were subsequently identified by PCR-RFLP analysis of ITS rDNA. Depending on the sampling locations, the nematode larvae from common squid showed different prevalence, intensity and species distribution. A high prevalence (P) and mean intensity (MI) of infection were observed in the Yellow Sea (n = 250, P = 86.0%, MI = 5.99 larvae/host) and the southern sea of Korea (n = 126, P = 57.1%, MI = 3.36 larvae/host). Anisakis pegreffii was dominantly found in common squid from the southern sea (127/ 140, 90.7%) and the Yellow Sea (561/565, 98.9%). In contrast, the P and MI of infection were relatively low in the East Sea (n = 239, P = 8.37%, MI = 1.25 larvae/host). A. pegreffii was not found from the East Sea and 52.0% (13/25) of the nematodes were identified as A. simplex. Most of them were found in the body cavity or digestive tract of common squid, which are rarely consumed raw by humans. Considering the differenences in anisakid nematode species distribution and their microhabitat in common squid, it remains unclear whether common squid plays an important role in the epidemiology of human anisakis infection in Korea. Further extensive identification of anisakid nematodes in common squid, with geographical and seasonal information will be necessary.  相似文献   
600.
Temperate zone deciduous tree phenology may be vulnerable to projected temperature change, and associated geographical impact is of concern to ecologists. Although many phenology models have been introduced to evaluate climate change impact, there has been little attempt to show the spatial variation across a geographical region due to contamination by the urban heat island (UHI) effect as well as the insufficient spatial resolution of temperature data. We present a practical method for assessing climate change impact on tree phenology at spatial scales sufficient to accommodate the UHI effect. A thermal time-based two-step phenological model was adapted to simulate and project flowering dates of Japanese cherry (Prunus serrulata var. spontanea) in South Korea under the changing climates. The model consists of two sequential periods: the rest period described by chilling requirements and the forcing period described by heating requirements. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree at the Seoul station of the Korea Meteorological Administration (KMA), along with daily temperature data for 1923–1948. The model was validated using the observed data at 18 locations across South Korea during 1955–2004 with a root mean square error of 5.1 days. This model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological normal years 1941–1970 and 1971–2000 based on observations at 56 KMA stations and a geospatial interpolation scheme for correcting urban heat island effect as well as elevation effect. We obtained a 25 km-resolution, 2011–2100 temperature projection data set covering peninsular Korea under the auspices of the Inter-governmental Panel on Climate Change—Special Report on Emission Scenarios A2 from the Meteorological Research Institute of KMA. The data set was converted to 270 m gridded data for the climatological years 2011–2040, 2041–2070 and 2071–2100. The phenology model was run by the gridded daily maximum and minimum temperature data sets, each representing climatological normal years for 1941–1970, 1971–2000, 2011–2040, 2041–2070, and 2071–2100. According to the model calculation, the spatially averaged flowering date for the 1971–2000 normal is earlier than that for 1941–1970 by 5.2 days. Compared with the current normal (1971–2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011–2040, 2041–2070, and 2071–2100, respectively. Southern coastal areas might experience springs with incomplete or even no flowering caused by insufficient chilling required for breaking bud dormancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号