首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   2篇
测绘学   2篇
大气科学   13篇
地球物理   26篇
地质学   45篇
海洋学   9篇
天文学   30篇
自然地理   14篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1970年   2篇
排序方式: 共有139条查询结果,搜索用时 156 毫秒
41.
The expression of different ethnic identities in the landscape is a product of the creation, destruction and preservation of the built environment. This may illustrate the changing processes over the evolution of a landscape. In the case of Braşov, Romania, it is possible to see in the urban landscape a reflection of the changing nature of the relationship between the ethnic German and Romanian populations, and the German and Romanian governments. This paper will demonstrate the persistence of ethnic German culture in the built environment and social organisation of Braşov in spite of the exodus of the ethnic German population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
43.
Exhumed eclogitic crust is rare and exposures that preserve both protoliths and altered domains are limited around the world. Nominally anhydrous Neoproterozoic anorthositic granulites exposed on the island of Holsnøy, in the Bergen Arcs in western Norway, preserve different stages of progressive prograde deformation, together with the corresponding fluid‐assisted metamorphism, which record the conversion to eclogite during the Ordovician–Silurian Caledonian Orogeny. Four stages of deformation can be identified: (1) brittle deformation resulting in the formation of fractures and the generation of pseudotachylites in the granulite; (2) development of mesoscale shear zones associated with increased fluid–rock interaction; (3) the complete large‐scale replacement of granulite by hydrous eclogite with blocks of granulite sitting in an eclogitic “matrix”; and (4) the break‐up of completely eclogitized granulite by continued fluid influx, resulting in the formation of coarse‐grained phengite‐dominated mineral assemblages. P–T constraints derived from phase equilibria forward modelling of mineral assemblages of the early and later stages of the conversion to eclogite document burial and partial exhumation path with peak metamorphic conditions of ~21–22 kbar and 670–690°C. The P–T models, in combination with existing T–t constraints, imply that the Lindås Nappe underwent extremely rapid retrogressive pressure change. Fluid infiltration began on the prograde burial path and continued throughout the recorded P–T evolution, implying a fluid source that underwent progressive dehydration during subduction of the granulites. However, in places limited fluid availability on the prograde path resulted in assemblages largely consuming the available fluid, essentially freezing in snapshots of the prograde evolution. These were carried metastably deeper into the mantle with strain and metamorphic recrystallization partitioned into areas where ongoing fluid infiltration was concentrated.  相似文献   
44.
The U-Pb dating of 18 samples, representing the principal rock types of the 4000 km2 Salmi anorthosite-rapakivi granite complex and its satellite Uljalegi pluton, southeastern Baltic (Fennoscandian) Shield, reveals that six temporally distinct episodes of igneous activity occurred in a timespan of 17 million years. From oldest to youngest they are: (1) gabbronorite and monzonite at 1546.7 Ma; (2) syenogranite at 1543.4 Ma; (3) early wiborgite and pyterlite at 1540.6–1537.9 Ma; (4) biotite granite and more evolved granite at 1538.4–1535 Ma; (5) late pyterlite at 1535.2 Ma; (6) olivine gabbro and biotite-amphibole granite at 1530 Ma. The resolvable intervals between magmatic episodes are 3.5–5.0 million years. Early wiborgite and pyterlite (3, above) and biotite granite (4, above) probably crystallized from multiple magma intrusions. Age differences of 3.4±1.5 million years between zircon and baddeleyite in olivine gabbro (6, above) are probably a result of xenocrystic origin of baddeleyite extracted from an earlier mafic phase of the Salmi complex. The ages and chemical features of early and late zircon populations, together with our modeling of magma crystallization and zircon growth, show that the duration of magma crystallization and Pb-diffusion in zircon was short lived and insignificant compared to the precision of dating of about ±1–2 million years. Hence, the range of U-Pb ages for each of the major rock types may approximate the emplacement intervals of their respective magmas. Average rate of magma emplacement was about 0.01 km3/year for the most voluminous phase of early biotite-amphibole rapakivi granite, and about 0.0024 km3/year for the Salmi complex as a whole. Compositional changes of the Salmi magmas over time are in agreement with the model of magmatism related to lithospheric extension. Received: 2 August 1996 / Accepted 19 December 1996  相似文献   
45.
Mariner 9 (M9) and Mariner 6 and 7 photography of common regions of Mars are compared, with appropriate attention to the photometric properties of the camera systems. The comparison provides a 2.5yr time baseline for study of variable albedo features. We find the development of bright streaks and patches, a phenomenon unobserved through the entire M9 mission; the evolution of dark crater splotches into dark streaks; and a planetwide increase in splotchiness. Yet, a large number of splotches and albedo boundaries remain fixed over the same period. Many of the observations are interpreted in terms of a global fallout and subsequent local redistribution of bright fine particulates raised by global dust storms.  相似文献   
46.
A remarkable set of albedo changes has been uncovered by Mariner 9 photography of the upper slopes of the shield volcano Pavonis Mons, near its summit caldera. The most likely explanation of the event is aeolian transport of fine-grained particles. Since the atmospheric pressure in this locality is ~ 1.5 mb, minimum wind velocities above the surface boundary layer of about 110 m/s are necessary, corresponding to 0.51 of the speed of sound. Slope winds in this velocity range are expected near the upper flanks of major Martian volcanic constructs.  相似文献   
47.
A commonly used method of simulating ocean waves from a specified frequency spectrum is shown to be incorrect. The method consists of adding numerous sine curves with random phases; and the error arises from assuming that the amplitudes of these component sine waves are deterministic, when they are in fact random variables. Methods of using random amplitudes are described and only one is found to be satisfactory. In this method the number of random values simulated — and then transformed with an inverse FFT — equals the required number of simulated data points. So simulation in the frequency domain can only give relatively short runs; it is necessary to work in the time domain if arbitrarily long runs are required.Errors in wave group statistics derived from the incorrect simulation method are discussed and related to discrepancies reported between groupiness in simulated data and ocean measurements.  相似文献   
48.
Younger Dryas to earliest Holocene mega‐landslides (>10 km2) in the eastern Fish Lake Plateau of central Utah required unusually wet conditions to drive movement. The sediment from abundant small lakes, ponds and especially fens that formed in swales between hummocks on the landslide surfaces are excellent archives of past climate. An integrated geophysical, geochemical and micro‐palaeontological investigation characterized fen deposits, determining the timing of mass movement and establishing the subsequent climate history of the region. High‐resolution P‐(compressional) wave surveys of fen deposits were conducted to image fen‐landslide contacts. Past climate states were assessed through loss on ignition, pollen and diatom abundances. Diatoms, in particular, record large variations in precipitation as the present‐day wetland switched from fen (intermittent standing water) to pond states in response to variable precipitation. One core was analysed for detailed climate proxies. A wet episode (pond) prevailed from 11.5 to 10 ka after which the climate became much drier (fen) until 6 ka due to weakening of the North American Monsoon. After 2.5–2.0 ka, reduced insolation produced cooler summers and wet winters (pond). Only recently (<500 years) has a fen re‐emerged based on direct observation and the disappearance of diatoms that require standing water. 14C ages of basal sediment from four cores show two episodes of movement: 12.8–12.5 and 10.5 ka. The earlier ages indicate that Younger Dryas high effective precipitation caused mass wasting. Later, during early Holocene times, colder winters followed by warmer summers and vigorous monsoons drove movement as rapid spring snow‐melt was followed by wet summers. In broad terms, this work highlights variable climate conditions that can drive mass movement, as well as the sensitivity of diatom records in fens to effective precipitation.  相似文献   
49.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   
50.
Benthic respiration, sediment–water nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in the upper section of the Parker River Estuary from 1993 to 2006. This site experiences large changes in salinity over both short and long time scales. Sediment respiration ranged from 6 to 52 mmol m−2 day−1 and was largely controlled by temperature. Nutrient fluxes were dominated by ammonium fluxes, which ranged from a small uptake of −0.3 to an efflux of over 8.2 mmol N m−2 day−1. Ammonium fluxes were most highly correlated with salinity and laboratory experiments demonstrated that ammonium fluxes increased when salinity increased. The seasonal pattern of DNRA closely followed salinity. DNRA rates were extremely low in March, less than 0.1 mmol m−2 day−1, but increased to 2.0 mmol m−2 day−1 in August. In contrast, denitrification rates were inversely related to salinity, ranging from 1 mmol m−2 day−1 during the spring and fall to less than 0.2 mmol m−2 day−1 in late summer. Salinity appears to exert a major control on the nitrogen cycle at this site, and partially decouples sediment ammonium fluxes from organic matter decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号