首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  国内免费   2篇
大气科学   11篇
地球物理   2篇
地质学   30篇
海洋学   4篇
天文学   4篇
自然地理   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   7篇
  2008年   3篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1934年   1篇
  1931年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
Results from detailed pollen and 18O/16O studies on two sediment profiles from small Swiss lakes are reported. 18O/16O records in lacustrine carbonate contain paleoclimatic information because they reflect mainly the isotope ratio in rain and snow which is correlated to temperature. Several transitions between different climatic periods determined palyno-logically are also indicated by marked changes in the isotope ratios in both profiles, namely the transitions Oldest Dryas - Bøiling and Allerød - Younger Dryas - Preboreal. 18o/16O was 2 to 3 %0 lower during Younger Dryas than during the adjacent periods, corresponding to a temperature drop of a few degrees Centigrade according to a tentative estimate.  相似文献   
52.
A detailed field study reveals a gradual transition from high‐grade solid‐state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation‐parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well‐equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high‐energy like–like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole‐rock volume and changes completely its macro‐ and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt‐enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.  相似文献   
53.
In order to evaluate the sensitivity of aquatic and terrestrial ecosystems to climatic changes, lithological (sediment structure and color, grain size, physical properties) and biochemical (TOC, TOC/TN, δ13C of TOC and carbonates) investigations were carried out on an 11.12 m-long sediment core from Lama Lake (Central Siberia, Putorana Plateau). According to the pollen data, the sequence represents the termination of the Pleistocene, and the entire Holocene. It is composed of highly terrigenous and stratified clays and silts. Sediment structure, grain-size distribution, carbonate contents and physical properties of the sediment indicate that glaciers were present in the catchment area of Lama Lake during the period Oldest Dryas to AllerØd. For the same time period, δ13C values of TOC give indications of a perennial ice cover. Since the AllerØd, organic matter accumulation has increased, caused by an increasing input of land vegetation and aquatic primary production as revealed by relations TOC contents, TOC/TN ratios and δ13C values of TOC. During the Holocene climatic optimum, in late Preboreal and Boreal times, biogenic primary production in Lama Lake reached its maximum and the vegetation in the catchment area changed from grassy tundra to a dense forest. From the Atlantic period to the present, small variations in δ13C values of TOC and TOC contents are probably related to the location of Lama Lake on the border between grass and wooded steppe, leading to responses of environmental conditions to even small changes in climate.  相似文献   
54.
Abstract— Presolar SiC from the Indarch (EH4) meteorite was studied by scanning electron microscopy (SEM), by ion probe analysis for C and Si isotopic compositions, and by static source mass spectrometry for noble gas and C isotopic compositions. The data obtained are compared to SiC data from other meteorites, especially from Murchison (CM2), for which there is the most information available. The isotopic compositions of the major elements in SiC from Indarch and Murchison are similar. Stepped combustion data suggest a mean δ13C for SiC from both meteorites of ~+1430%o. Silicon isotopes in Indarch and Murchison SiC also compare well. In some other important respects, however, SiC in the two meteorites are different. Morphologically, SiC from Indarch appears finer grained than SiC from Murchison and is entirely composed of submicron grains. The finer-grained nature of Indarch SiC is confirmed by its noble gas characteristics. The mean Ne-E/Xe-S ratio for bulk Indarch SiC is significantly lower than the same ratio in Murchison (625 ± 47 vs. ~3500) but is similar to that of the finest grain-size fractions (<1 μm) in Murchison. A comparison of noble gas data from SiC from several different meteorites suggests that it might be Murchison SiC, rather than Indarch SiC, that is unusual. The grain-size disparities in SiC between meteorites are difficult to explain by residue processing differences or differing parent body processing. Instead, we speculate that a grain-size sorting mechanism for SiC may have operated in the solar nebula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号