首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   21篇
  国内免费   5篇
测绘学   7篇
大气科学   32篇
地球物理   71篇
地质学   104篇
海洋学   11篇
天文学   81篇
综合类   3篇
自然地理   6篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   11篇
  2016年   11篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   13篇
  2011年   20篇
  2010年   24篇
  2009年   15篇
  2008年   13篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有315条查询结果,搜索用时 31 毫秒
151.
Lynch's Crater on the Atherton Tablelands in NE-Australia formed about 230,000 years ago during an explosive eruption, creating a maar more than 80 m deep. Since the eruption, the maar has been filled with lake sediments that are topped by peat material. A 64 m long core was recovered and an OSL dating project was undertaken to extend the chronology beyond 16 m depth, which according to 14C age control represents ~60 ka. The predominantly organic lake sediments contained abundant fine quartz of aeolian origin, and the Single Aliquot Regenerative Method (SAR) provided satisfactory equivalent dose (DE) estimates. However, the determination of the dose rate proved both critical and difficult. Extremely low radionuclide contents led to cosmic radiation being the dominant dose rate contribution for most samples. The OSL chronology presented in this paper thus relies on modelling the changing cover by sediments and lake water over the burial time.  相似文献   
152.
Abstract— A new locality of in situ massive impact‐melt rock was discovered on the south‐southwestern rim of the Roter Kamm impact structure. While the sub‐samples from this new locality are relatively homogeneous at the hand specimen scale, and despite being from a nearby location, they do not have the same composition of the only previously analyzed impact‐melt rock sample from Roter Kamm. Both Roter Kamm impact‐melt rock samples analyzed to date, as well as several suevite samples, exhibit a granitic‐granodioritic precursor composition. Micro‐chemical analyses of glassy matrix and Al‐rich orthopyroxene microphenocrysts demonstrate rapid cooling and chemical disequilibrium at small scales. Platinum‐group element abundances and ratios indicate an ordinary chondritic composition for the Roter Kamm impactor. Laser argon dating of two sub‐samples did not reproduce the previously obtained age of 3.7 ± 0.3 (1s?) for this impact event, based on 40Ar/39Ar dating of a single vesicular impact‐melt rock. Instead, we obtained ages between 3.9 and 6.3 Ma, with an inverse isochron age of 4.7 ± 0.3 Ma for one analyzed sub‐sample and 5.1 ± 0.4 Ma for the other. Clearly a post‐5 Ma impact at Roter Kamm remains indicated, but further analytical work is required to better constrain the currently best estimate of 4–5 Ma. Both impactor and age constraints are clearly obstructed by the inherent microscopic heterogeneity and disequilibrium melting and cooling processes demonstrated in the present study.  相似文献   
153.
The occurrence of extreme cyclones is analysed in terms of their relationship to the NAO phase and the dominating environmental variables controlling their intensification. These are latent energy (equivalent potential temperature 850 hPa is used as an indicator), upper-air baroclinicity, horizontal divergence and jet stream strength. Cyclones over the North Atlantic are identified and tracked using a numerical algorithm, permitting a detailed analysis of their life cycles. Extreme cyclones are selected as the 10% most severe in terms of intensity. Investigations focus on the main strengthening phase of each cyclone. The environmental factors are related to the NAO, which affects the location and orientation of the cyclone tracks, thus explaining why extreme cyclones occur more (less) frequently during strong positive (negative) NAO phases. The enhanced number of extreme cyclones in positive NAO phases can be explained by the larger area with suitable growth conditions, which is better aligned with the cyclone tracks and is associated with increased cyclone life time and intensity. Moreover, strong intensification of cyclones is frequently linked to the occurrence of extreme values of growth factors in the immediate vicinity of the cyclone centre. Similar results are found for ECHAM5/OM1 for present day conditions, demonstrating that relationships between the environment factors and cyclones are also valid in the GCM. For future climate conditions (following the SRES A1B scenario), the results are similar, but a small increase of the frequency of extreme values is detected near the cyclone cores. On the other hand, total cyclone numbers decrease by 10% over the North Atlantic. An exception is the region near the British Isles, which features increased track density and intensity of extreme cyclones irrespective of the NAO phase. These changes are associated with an intensified jet stream close to Europe. Moreover, an enhanced frequency of explosive developments over the British Isles is found, leading to more frequent windstorms affecting Europe.
Joaquim G. PintoEmail:
  相似文献   
154.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   
155.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   
156.
The availability of electric power is an important prerequisite for the development or maintenance of high living standards. Global change, including socio-economic change and climate change, is a challenge for those who have to deal with the long-term management of thermoelectric power plants. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short and medium term. In the long term, the water demand will change as old units are retired and new generating units are built. The present paper analyses the effects of global change and options for adapting to water shortages for power plants in the German capital Berlin in the short and long term. The interconnection between power plants, i.e. water demand, and water resources management, i.e. water availability, is described. Using different models, scenarios of socio-economic and climate change are analysed. One finding is that by changing the cooling system of power plants from a once-through system to a closed-circuit cooling system the vulnerability of power plants can be reduced considerably. Such modified cooling systems also are much more robust with respect to the effects of climate change and declining streamflows due to human activities in the basin under study. Notwithstanding the possible adaptations analysed for power plants in Berlin, increased economic costs are expected due to declining streamflows and higher water temperatures.  相似文献   
157.
Geomorphological and glacial geological surveys and multiple cosmogenic nuclide analyses (10Be, 26Al, and 21Ne) allowed us to reconstruct the chronology of variations prior to the last glacial maximum of the East Antarctic Ice Sheet (EAIS) and valley glaciers in the Terra Nova Bay region. Glacially scoured coastal piedmonts with round-topped mountains occur below the highest local erosional trimline. They represent relict landscape features eroded by extensive ice overriding the whole coastal area before at least 6 Ma (pre-dating the build-up of the Mt. Melbourne volcanic field). Since then, summit surfaces were continuously exposed and well preserved under polar condition with negligible erosion rates on the order of 17 cm/Ma. Complex older drifts rest on deglaciated areas above the younger late-Pleistocene glacial drift and below the previously overridden summits. The combination of stable and radionuclide isotopes documents complex exposure histories with substantial periods of burial combined with minimal erosion. The areas below rounded summits were repeatedly exposed and buried by ice from local and outlet glaciers. The exposure ages of the older drift(s) indicate multiple Pleistocene glacial cycles, which did not significantly modify the pre-existing landscape.  相似文献   
158.
ABSTRACT

Field and petrologic characteristics of two new eclogite localities within the Guatemala Suture Complex (GSC) north of the Motagua Fault are presented. The Tuncaj Hill locality exposes a coherent body of retrogressed eclogite hundreds of metres long that is associated with serpentinite of the North Motagua Unit. The Tanilar River locality exposes numerous bands and lenses of eclogite hosted in sialic gneisses of the Chuacús Complex. The Tuncaj eclogite has a two-stage prograde evolution containing the peak assemblage Grt + Omp + Ttn + Czo + Zo ± Am, formed at temperatures <720°C. In contrast, eclogites of the Tanilar unit are characterized by the paragenesis Omp + Grt + Rt ± Phg ± Qtz ± Ep giving higher peak conditions of T = 720–830°C and P = 2.1–2.7 GPa, near the stability field of coesite. Previously obtained data and our thermobaric calculations suggest distinct petrotectonic evolutions for the various types of eclogites within the suture. The lawsonite eclogites south of the Motagua Fault were probably produced in a mature Farallon subduction zone during the Early Cretaceous. The northern high-pressure (HP) blocks in serpentinite mélange and coherent amphibolite bodies with eclogite relics were generated by the Early Cretaceous subduction of the proto-Caribbean lithosphere under the Great Caribbean Arc. A continental block, the North American passive margin, reached the arc’s trench in the Campanian and was subducted to ca. 80 km depth, producing the eclogites of the Chuacús Complex. As the slab was delaminated and partially exhumed, the continental Chuacús became tectonically juxtaposed with HP blocks of the proto-Caribbean that had been accreted to the Caribbean plate forming the North Motagua Unit. The juxtaposed group migrated to mid-crustal level and was contemporaneously retrogressed under epidote-amphibolite facies conditions.  相似文献   
159.
Facing the challenges of the European Water Framework Directive and competing demands requires a sound knowledge of the hydrological system. This is a major challenge in regions like Northeast Germany. The landscape has been massively reshaped during repeated advances and retreats of glaciation during the Pleistocene. This resulted in a complex setting of unconsolidated sediments with high textural heterogeneity and with layered aquifer systems, partly confined, but usually of unknown number and extent of single aquifers. The Institute of Landscape Hydrology aims both at a better understanding of hydrological processes and at providing a basis for sustainable water resources management in this region. That would require sound information about the respective regions of interest that are rarely available at sufficient degree of detail. Thus, there is urgent need for alternative approaches. For example, time series of groundwater head, lake water level and stream runoff do not only depend on (unknown) geological structures, but in turn can reveal information about major geological features. To that end, different approaches have been developed and successfully applied at different scales, based both on advanced time series analysis and dimension reduction approaches and on well-known and rather simple methods. This approach has been coined “forensic hydrology”: Like in a crime story, numerous pieces of evidence are combined in a systematic way to end up with a consistent conceptual model about the prevailing cause–effect relationships. An example is given for the Quillow catchment in Northeast Germany in a rather complex geological setting.  相似文献   
160.
A spectrum of the satellite of Jupiter, Io, from 0.86 to 2.7 μm at a resolution of 3.36 cm?1 and a signal to rms noise ratio of 120 is presented. No absorptions due to any atmospheric constituents on Io could be found on the spectrum. Upper limits of 0.12 cm-atm for NH3, 0.12cm-atm for CH4, 0.4cm-atm for N2O, and 24cm-atm for H2S were determined. Laboratory spectra of ammonia frosts as a function of temperature were compared with the spectrum of Io and showed as a frost not to be present at the surface of Io. A search for possible resonance lines of carbon, silicon, and sulfur as well as the 1.08μm line of helium proved negative and upper emission limits of 60, 18, 27, and 60 kilorayleighs, respectively, were established for these lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号