首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   7篇
  国内免费   17篇
测绘学   1篇
大气科学   16篇
地球物理   52篇
地质学   119篇
海洋学   11篇
天文学   9篇
自然地理   16篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   23篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   11篇
  2006年   3篇
  2005年   11篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1996年   23篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   8篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1971年   1篇
  1970年   3篇
  1968年   3篇
  1967年   3篇
  1965年   2篇
  1964年   1篇
  1962年   1篇
  1959年   1篇
  1928年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
51.
In the Rhine-Meuse delta in the south-western part of the Netherlands,the morphology of the river branches is highly dependent on the erodibility of the subsoil.Erosion processes that were initiated after closure of the Haringvliet estuary branch by a dam(in 1970),caused a strong incision of several connecting branches.Due to the geological evolution of this area the lithology of the subsoil shows large variations in highly erodible sand and poorly erodible peat and clay layers.This study shows how the geological information can be used to create 3D maps of the erodibility of the sub-soil, and how this information can be used to schematize the sub-soil in computational models for morphological simulations.Local incisement of sand patches between areas with poorly erodible bed causes deep scour holes,hence increasing the risk on river-bank instability(flow slides) and damage to constructions such as groynes,quays,tunnels, and pipelines.Various types of mathematical models,ranging from 1D(SOBEK) to quasi-3D(Delft3D) have been applied to study the future development of the river bed and possible management options.The results of these approaches demonstrate that models require inclusion of a layer-bookkeeping approach for sub-soil schematization, non-uniform sediment fractions(sand-mud),tidal and river-discharge boundary conditions,and capacity-reduction transport modeling.For risk-reducing river management it has been shown how the development of the river bed can be addressed on a large scale and small scale.For instance,the use of sediment feeding and fixation of bed can be proposed for large-scale management,while monitoring and interventions at initiation of erosion can be proposed as response to small-scale developments that exceed predefined intervention levels.  相似文献   
52.
Abstract

To investigate the consequences of climate change on the water budget in small catchments, it is necessary to know the change of local precipitation and temperature. General Circulation Models (GCM) cannot provide regional climate parameters yet, because of their coarse resolution and imprecise modelling of precipitation. Therefore downscaling of precipitation and temperature has to be carried out from the GCM grids to a small scale of a few square kilometres. Daily rainfall and temperature are modelled as processes conditioned on atmospheric circulation. Rainfall is linked to the circulation patterns (CPs) using conditional probabilities and conditional rainfall amount distribution. Both temperature and precipitation are downscaled to several locations simultaneously taking into account the CP dependent spatial correlation. Temperature is modelled using a simple autoregressive approach, conditioned on atmospheric circulation and local areal precipitation. The model uses the classification scheme of the German Weather Service and a fuzzy rule-based classification. It was applied in the Aller catchment for validation using observed rainfall and temperature, and observed classified geopotential pressure heights. GCM scenarios of the ECHAM model were used to make climate change predictions (using classified GCM geopotential heights); simulated values agree fairly well with historical data. Results for different GCM scenarios are shown.  相似文献   
53.
Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward sedimentation, whereas alluvial fans may lack these effects. Hence the present authors hypothesize that morphodynamics on alluvial fans are determined primarily by upstream boundary conditions, whereas morphodynamics on fan deltas are determined by both the upstream and the downstream boundary condition and changes therein. To isolate the effects of the upstream and downstream boundaries, five new alluvial fan experiments are compared with the details of three fan deltas published earlier that were formed under very similar and simple conditions. Similar to the fan deltas, the alluvial fans build up by sheet flow, whilst quasi‐regular periods of incision cause temporary channelized flow. Incision is followed by channel backfilling, after which the fan returns to sheet flow. The channelization and backfilling in alluvial fans is markedly less pronounced and more prone to autogenic disturbance than in fan deltas. The difference is caused by morphodynamics at the downstream boundary. In a fan delta, the flow expansion of the channel causes deposition of all the sediment, which forms a mouth bar and causes strong backfilling. In an alluvial fan, on the other hand, the slope break at the fan perimeter causes some deposition, but transport is not reduced to zero. Consequently, the backfilling in alluvial fans is less pronounced than in fan deltas. Other published experiments support this trend: removal of the mouth bar by a river leads to permanent channelization, whilst pronounced mouth‐bar formation in highly channelized deltas promotes backward sedimentation. The experimental results for this study predict that, when alluvial fans prograde into lakes or deep rivers, they transition to fan deltas with increasingly deeper channels and thicker backfill deposits.  相似文献   
54.
In order to constrain spatial variability in watermass conditions within the European Epicontinental Seaway prior to, during and after the Toarcian Oceanic Anoxic Event, carbon (δ13Cbel, δ13Ccarb) and oxygen (δ18Obel, δ18Ocarb) isotope records were obtained from three sections in the Grands Causses Basin (southern France). These data were then compared with similar records along a north–south transect across the European Epicontinental Seaway. As the conclusions reached here strongly depend on the reliability of belemnite calcites as archives of palaeoceanographic changes, an attempt was made to improve the understanding of isotope signals recorded in belemnite calcite. Intra‐rostral carbon and oxygen‐isotope data from six belemnite specimens belonging to the genus Passaloteuthis were collected. Intra‐rostral carbon‐isotopes are influenced by vital effects, whereas oxygen‐isotopes reflect relative changes in temperature and salinity. Palaeotemperatures calculated from δ18Obel‐isotope records from the Grands Causses Basin confirm relatively low temperatures throughout the Late Pliensbachian. Similar cool water conditions have previously been shown in Germany, England, Spain and Portugal. A temperature increase of up to 6 °C is observed across the Pliensbachian–Toarcian boundary. A pronounced negative shift of at least ?3‰ (Vienna‐Pee Dee Belemnite) is recorded in bulk carbonate carbon during the lower Harpoceras serpentinum zone, typical of the Toarcian Oceanic Anoxic Event. Before and after the Toarcian Oceanic Anoxic Event, a good correlation between δ13Ccarb and δ13Cbel exists, indicating well‐ventilated bottom‐waters and normal marine conditions. Instead, data for the Toarcian Oceanic Anoxic Event indicate the development of a strong north–south gradient in salinity stratification and surface‐water productivity for the Western Tethyan realm. This study thus lends further support to a pronounced regional overprint on carbon and oxygen‐isotope records in epicontinental seaways.  相似文献   
55.
56.
57.
Abstract Biotite and cordierite occur in a 1-km wide zone of pelitic hornfelses around the McGerrigle pluton. These phases display systematic changes in X Fe that can be attributed to continuous reactions involving chlorite or andalusite in the system KFMASH. Through much of the zone biotite and cordierite were products of the 'breakdown'of chlorite. Close to the pluton this continuous reaction was terminated by a discontinuous reaction that introduced andalusite. Pelites which interdigitate with apophyses of the intrusive at the pluton margin contain assemblages that record a continuous reaction between biotite, cordierite, andalusite, muscovite, and quartz or, alternatively, the discontinuous breakdown of muscovite and quartz to K-feldspar and andalusite.
The mole fraction of Fe in biotite and cordierite increased significantly with the progress of the first continuous reaction and apparently decreased during the second continuous reaction. The K D of Fe-Mg between the minerals decreased and apparently increased, respectively, during the two reactions.
Biotite-cordierite-chlorite assemblages are interpreted to have been stable at temperatures between 525° C and 615° C and biotite-cordierite-andalusite assemblages stable at temperatures between 615° C and 635° C. The confining pressure was estimated to have been < 2 kbar.
The results of this study suggest that the K D of Fe-Mg between biotite and cordierite is a function of temperature, the Fe-Mg exchange characteristics of the controlling continuous reaction and non-ideal mixing of Fe and Mg.  相似文献   
58.
Analytical solutions of vertical electrical soundings (VES) have mostly been applied to groundwater exploration and monitoring groundwater quality on terrains of fairly simple geology and geomorphology on which the electrode arrays are symmetrical (e.g. Schlumberger or Wenner configurations). The sounding interpretation assumes flat topography and horizontally stratified layers. Any deviations from these simple situations may be impossible to interpret analytically. The recently developed GEA-58 geoelectrical instrument can make continuous soundings along a profile with any colinear electrode configuration. This paper describes the use of finite-difference and finite-element methods to model complex earth resistivity distributions in 2D, in order to calculate apparent resistivity responses to any colinear current electrode distribution in terrains in which the earth resistivities do not vary along the strike. The numerical model results for simple situations are compared with the analytical solutions. In addition, a pseudo-depth section of apparent resistivities measured in the field with the GEA-58 is compared with the numerical solution of a real complex resistivity distribution along a cross-section. The model results show excellent agreement with the corresponding analytical and experimental data.  相似文献   
59.
The basalt stratigraphy of the Deccan Trap between MahabaleshwarGhat and Belgaum over-steps the basement from north to south.Sr-isotope and Zr/Nb ratios, and Sr, Rb, and Ba concentrationscorrelate portions of the post-Poladpur stratigraphy over 250km along the Western Ghats, thereby confirming a southerly componentof dip of 0?06?. At the southwestern margin, the stratigraphyextends upwards from the compositionally uniform Ambenali Formation(Cox & Hawkesworth, 1984) into a sequence of grossly heterogeneousflow units which have been allocated to the Mahabaleshwar andPanhala Formations (Lightfoot & Hawkesworth, 1988). TheMahabaleshwar Formation is represented only by a sequence ofhighly fractionated flows (termed the Kolhapur unit) with similar87Sr/86Sr0 to the Mahabaleshwar (0?7045), but with Sr<240ppm and TiO2>2?25%. Succeeding the Kolhapur unit are a seriesof flows with high 87Sr/86Sr0 (0?7045-0?705), Zr/Nb > 13,and low Sr (< 200 ppm), which have been allocated to thePanhala Formation, and a group of flows with high 87Sr/86Sr0(0?707–0?708) and Sr (>230), but trace element concentrationssimilar to the Mahabaleshwar Formation; these have been allocatedto the Desur unit of the Panhala. Geochemical variations in flows overlying the Ambenali definetwo distinct trends: one is attributed to gabbro fractionation,and the other to variations in the compositions of the parentalmagmas, and arguably their source regions. There is little evidencefor significant crustal contamination in these flows, and thedegree of fractionation and the composition of the phase extractare shown to vary along strike within the Mahabaleshwar Formation.The high TiO2 content of Kolhapur unit flows is shown to bethe result of shallow-level gabbro fractionation, rather thanthe presence of a primitive high-Ti magma. Mahabaleshwar Formationbasalts exhibit a broad negative correlation between the degreeof fractionation and Sr-isotopic composition. The endmemberwith lower 87Sr/86Sr0 has different Zr/Y from the Ambenali basalts,and would appear to have been generated by lower degrees ofmelting of a similar source. The other endmember has more radiogenicSr, lower Zr/Nb, similar Zr/Y, but higher mg-number. The simplestinterpretation is that these magmas were more primitive andhence hotter and more able to interact with the lithosphereen route to the surface, and that they then mixed to producethe Mahabaleshwar array. The Panhala Formation basalts ploton the Sr-Nd array defined by the Mahabaleshwar Formation, andthe Desur unit basalts plot on an extension of this array; thissuggests that the source characteristics are also lithospheric.The absolute elemental abundances may then be a function ofmelting and fractionation. We are impressed by the apparentswitch from crustal lithospheric contributions to mantle lithosphericcontributions through the stratigraphy, and suggest that this,together with the more protracted fractionation of the magma,reflects a change in the availability of the lithospheric componentsaccompanying the southerly migration of the volcanic edifice. * Present address: Geoscience Laboratories, Ontario Geological Survey, 11th Floor, 77, Grenville Street, Toronto, Ontario, M7A 1W4, Canada  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号