首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   3篇
  国内免费   3篇
测绘学   18篇
大气科学   63篇
地球物理   42篇
地质学   147篇
海洋学   3篇
天文学   29篇
综合类   3篇
自然地理   6篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   13篇
  2017年   20篇
  2016年   28篇
  2015年   16篇
  2014年   15篇
  2013年   17篇
  2012年   20篇
  2011年   16篇
  2010年   15篇
  2009年   20篇
  2008年   10篇
  2007年   11篇
  2006年   13篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有311条查询结果,搜索用时 421 毫秒
61.

New data on mercurial mineralization are presented, and a detailed characteristic is given for the first discovery of mercurous silver in ores of the Rogovik gold–silver deposit (the Omsukchan trough, Northeastern Russia). It was found that native silver in the examined ores occurs as finely-dispersed inclusions in quartz filling microcracks and interstitions. It also occurs in associations with kustelite, Ag sulfosalts and selenides, selenitic acanthite, and argyrodite. The mercury admixture varies from “not detected” in the central parts of grains to 0.22–1.70 wt % along the edges, or, in independent grains, to the appearance of Ag amalgams containing 10.20–24.61 wt % of Hg. The xenomorph form of grains of 50 μm or less in size prevails. It is assumed that the appearance of mercurial mineralization is caused by the superposition of products of the young Hg-bearing Dogda–Erikit belt upon the more ancient Ag-bearing Omsukchan trough.

  相似文献   
62.
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Experiments on water solubility in forsterite in the systems Mg2SiO4–K2Mg(CO3)2–H2O and Mg2SiO4–H2O–C were conducted at 7.5–14.0 GPa and 1200–1600 °C. The resulting crystals contain 448 to 1480 ppm water, which is 40–70% less than in the forsterite–water system under the same conditions. This can be attributed to lower water activity in the carbonate-bearing melt. The water content of forsterite was found to vary systematically with temperature and pressure. For instance, at 14 GPa in the system forsterite–carbonate–H2O the H2O content of forsterite drops from 1140 ppm at 1200 °C to 450 ppm at 1600 °C, and at 8 GPa it remains constant or increases from 550 to 870 ppm at 1300–1600 °C. Preliminary data for D-H-bearing forsterite are reported. Considerable differences were found between IR spectra of D-H- and H-bearing forsterite. The results suggest that CO2 can significantly affect the width of the olivine-wadsleyite transition, i.e., the 410-km seismic discontinuity, which is a function of the water content of olivine and wadsleyite.  相似文献   
65.
Smectitic parent material from the weathering Deccan basalt has been deposited in the lower piedmont plains, valleys and microdepressions during a previous wetter climate. The cracking clay soils (Vertisols) were developed in such alluvium during drier climate of the Holocene period. In India they occur in humid tropical (HT), sub-humid moist (SHM), sub-humid dry (SHD), semi-arid moist (SAM), semi-arid dry (SAD) and arid dry (AD) climatic environments and thus indicate an array of soils in a climosequence.The soils show a change in their morphological, physical, chemical and micromorphological properties in the climosequence. Soils of HT climate are dominated by Ca++ ions in their exchange complex throughout depth. However, in the sub-humid climates Mg++ ions tend to dominate in the lower horizons. The sub-humid moist to aridic climatic environments caused a progressive formation of pedogenic calcium carbonates (PC) with the concomitant increase in Na+ ions in soil solution. This facilitated the translocation of Na-clay in the soil profile. This is responsible for the increase in pH, decrease in Ca/Mg ratio of exchange sites with depth and finally in the development of subsoil sodicity. The reduction in mean annual rainfall (MAR) from sub-humid moist to arid climates accelerated the formation of PC and thus the soils of semi-arid and arid climates (SAM, SAD and AD) are more calcareous and sodic than soils of other climates (SHM and SHD).Formation of PC, illuviation of clay and the development of subsoil sodicity are concurrent, contemporary and active pedogenetic processes operating during the climate change of the Holocene period. These processes impaired the hydraulic properties of soils in general, and in soils of drier climates in particular. As a result, cracking pattern, chemical composition and plasmic fabric were more modified in soils of the drier climates. Such modifications in soil properties have a place in the rationale of Vertisol order of the US Soil Taxonomy. The soils of wetter climates (HT, SHM and SHD) are grouped in Typic Haplusterts whereas the soils of drier climates (SAM, SAD and AD) are classified as Aridic Haplusterts, Sodic Haplusterts and Sodic Calciusterts. The present study demonstrates how the intrinsic soil properties of the cracking clay soils in a climosequence may help in inferring the change in climate in a geologic period.  相似文献   
66.
Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July–August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.  相似文献   
67.
68.
The present study is carried out to examine the impact of temperature and humidity profiles from moderate resolution imaging spectroradiometer (MODIS) or/and atmospheric infrared sounder (AIRS) on the numerical simulation of heavy rainfall events over the India. The Pennsylvania State University–National Centre for Atmospheric Research fifth-generation mesoscale model (MM5) and its three-dimensional variational (3D-Var) assimilation technique is used for the numerical simulations. The heavy rainfall events occurred during October 26–29, 2005, and October 27–30, 2006, were chosen for the numerical simulations. The results showed that there were large differences observed in the initial meteorological fields from control experiment (CNT; without satellite data) and assimilation experiments (MODIS (assimilating MODIS data), AIRS; (assimilating AIRS data); BOTH (assimilating MODIS and AIRS data together)). The assimilation of satellite data (MODIS, AIRS, and BOTH) improved the predicted thermal and moisture structure of the atmosphere when compared to CNT. Among the experiments, the predicted track of tropical depressions from MODIS was closer to the observed track. Assimilation of MODIS data also showed positive impact on the spatial distribution and intensity of predicted rainfall associated with the depressions. The statistical skill scores obtained for different experiments showed that assimilation of satellite data (MODIS, AIRS, and BOTH) improved the rainfall prediction skill when compared to CNT. Root mean square error in quantitative rainfall prediction is less in the experiment which assimilated MODIS data when compared to other experiments.  相似文献   
69.
Jhilmili intertrappean bed (~13 m thick) attains its significance with the recent discovery of brackish water ostrocod and planktonic foraminifera fossils (Keller et al. 2009; Khosala et al. 2009). Present XRD data revealed abundance of montmorillonite > montmorillonite/chlorite mixed layer > palygorskite in five physically distinct lithounits namely: (a) lower chocolate brown siltstone with green patches, followed by (b) brick red clayey siltstone, (c) greenish grey clay, (d) yellowish brown clay and (e) uppermost olive grey to dark brown silt layers in the successionrepresent higher weathering indices and annual precipitation, reflecting cyclic, but longer spells of weathering. Occurrence of M/C mixed layer with the smectite in Jhilmili area is suggestive of their derivation from the later, whilst montmorillonite to palygorskite transformation is ascribed to the drastic changes in the humid to arid climate, where former served as a source of Al and some of the Si and Mg ions for the later. Jhilmili and Anjar clays represent similar charge occupancies at different sites, but later contains relatively higher amount of palygorskite, formed in the arid environment. Majority of the trace elemental data plots for Jhilmili clays lie within the upper and lower limits of infra (Lametas)-/inter-trappeans clays. The continuous release of Cu throughout the succession (mainly in the palygorskite dominated clays) indicates oxidizing conditions. PAAS normalized REE data plots for these clays show progressive enrichment in the HREE contents in the lower part, but, upper part of the succession is marked by positive cerium anomaly, reflecting oxidizing conditions prevailed at the later stage of the succession. These conditions continued, but, were not conducive to HREE enrichment as evidenced by their depletion in the upper part of the succession. The Ce anomaly observed in the middle part of the succession is similar to that form by continental weathering of the basalt, ascribed to Ce precipitation in the oxic environment, thus suggestive of drastic changes in the oxidizing conditions. Thermodynamic data-sets for Jhilmili clays show I/S mixed layer and celadonite compositions, whereas, Jabalpur infra-/inter-trappean clays correspond to Mg smectites and celadonite end members, thus, representing compositional commonality with those of the other clays derived from the continental weathering of basalt protolith. Jhilmili smectites and smectite-chlorite mixtures show compositional similarity with the dioctahedral and trioctahedral smectites and the smectites formed at 250°C, having compositions between trioctahedral smectite and chlorite, thus, assigning high temperatures for their formation, where the heat required for the formation of these clays was possibly derived from the hydrothermal fluids, associated with the Deccan volcanism.  相似文献   
70.
In operational forecast, the stability indices either individually or in combination are utilized to assess the predictability of local severe storms over a region. The objective of the present study is to identify such stability indices to assess the predictability of Bordoichila of Guwahati, India, during the pre-monsoon season (April–May) aiming to formulate a composite stability index using the most pertinent indices for nowcasting Bordoichila with considerable precision. Bordoichila, meaning the angry daughter of Assam, represents local severe storms of Guwahati during the pre-monsoon season. Precise forecast of Bordoichila is essential to mitigate the associated catastrophe over Guwahati. The forecast quality detection parameters are computed with the available indices during the period from 1997 to 2006 to select the most relevant stability indices for the prevalence of Bordoichila. The method of normal probability distribution is implemented to identify the threshold ranges of the selected indices. The stability indices that are selected with appropriate ranges are lifted index, Showalter index (SI), cross total index (CTI), vertical total index, totals total, convective available potential energy, convective inhibition energy, SWEAT and bulk Richardson number. The forecast skill scores are estimated with the selected indices. The best predictor indices identified for the prevalence of Bordoichila are the cross total index (CTI) and Showalter index (SI). A composite stability index, Bordoichila prediction index, is formulated with CTI and SI with proper weightages. The forecast with BPI is validated with the observations of India Meteorological Department for the year 2007 and is implemented for real-time forecast for the years 2009 and 2011.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号