首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   805篇
  免费   18篇
  国内免费   28篇
测绘学   9篇
大气科学   54篇
地球物理   282篇
地质学   207篇
海洋学   54篇
天文学   180篇
综合类   10篇
自然地理   55篇
  2024年   2篇
  2022年   7篇
  2021年   16篇
  2020年   9篇
  2019年   13篇
  2018年   35篇
  2017年   31篇
  2016年   39篇
  2015年   32篇
  2014年   41篇
  2013年   39篇
  2012年   37篇
  2011年   44篇
  2010年   46篇
  2009年   49篇
  2008年   46篇
  2007年   37篇
  2006年   36篇
  2005年   25篇
  2004年   21篇
  2003年   26篇
  2002年   14篇
  2001年   24篇
  2000年   16篇
  1999年   11篇
  1998年   13篇
  1997年   20篇
  1996年   19篇
  1995年   10篇
  1994年   8篇
  1993年   12篇
  1992年   7篇
  1991年   10篇
  1990年   5篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   6篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1965年   1篇
  1963年   1篇
  1959年   2篇
  1957年   1篇
  1954年   1篇
排序方式: 共有851条查询结果,搜索用时 15 毫秒
61.
Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. Introducing into planetary physics force of magnetic levitation of the superconducting iced particle of the rings, which interact with magnetosphere of the planet, becomes to be possible to explain origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings’ matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist “spokes”; why magnetic field lines have distortion near by ring F; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why exists strong electromagnetic radiation of the rings in the 20.4 kHz–40.2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn’s rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.  相似文献   
62.
The Earth's crust faults and lineaments group in clusters with predominant N-S and E-W (System I) and NW-SE and NE-SW (System II) directions. The earthquake epicenters of the Benioff seismofocal zones follow the same regularities. In other words, seismofocal zones (epicenters of earthquakes) constitute a part of the regular network of the Earth's crust and lithosphere faults and lineaments. Mathematical modeling of stress distribution in the lithosphere due to a change of the Earth's ellipsoid compression showed that the principal stresses σ1 and σ2 are oriented in N-S and E-W directions, while corresponding shear stresses τ are oriented in NE-SW and NW-SE directions. It is shown that the secular deceleration of the Earth's rotation can be a reasonable mechanism for the change of Earth's ellipsoid compression and, consequently, for the origin of the regular system of faults and lineaments described above.  相似文献   
63.
We present a spectral atlas of 4 B and A stars containing spectra in a poorly studied spectral range of 305–452 nm. The atlas is based on high resolution (R=60 000) spectra obtained with the 6 meter telescope (SAO, Russia) combined with the NES-spectrograph. The procedure of spectral lines identification and compilation of the atlas is discussed in detail. Using the spectral data we thoroughly investigated the velocity field in expanding atmospheres and envelopes of hot evolved stars β Ori, α Cyg and supergiant KS Per with the extreme hydrogen deficiency. The complete atlas and list of the identified spectral lines will be available via the astronomical database SIMBAD.  相似文献   
64.
A set of smoothed temperature gradient profiles around overshooting layers at the solar convective zone bottom is considered. In classical local theories of convection the one point defined according to the Schwarzschild criterion is enough to describe a convective boundary. To get a sophisticated picture of the overshooting we use four points to compute the transition overshooting functions. Analyzing the transition gradient profiles we found that the overshooting convective flux may be either positive or negative. A negative overshooting flux appears in nonlocal convective theories and causes a steep temperature gradient profile. But we propose an evenly smoothed gradient which corresponds to a convective flux positive everywhere. To outline the effect of the temperature gradient on the solar oscillations the squared Brunt–Väisälä frequency N 2 is calculated. In local convective theories the N 2 profile shows the discontinuity of the first derivative at the convective boundary, while all smoothed profiles eliminate the break.  相似文献   
65.
Although diffusion is usually associated with equalizing of the chemical composition, the pressure and temperature gradients inside the Sun cause elemental diffusion segregation. While light hydrogen is flowing up to the solar envelope, helium and heavier elements are settling down to the core. The target of our simulation is an accurate estimation of the settling rate in solar plasma during the course of solar evolution. The rate of helium depletion in the envelope is a key parameter of the solar evolution and depends on position and conditions around the base of the convective mixing zone. The rate of heavy element settling is sensitive to the degree of ionization and interaction with the radiation flux. We estimate the effect of ion ionization on the settling rate for several heavy elements up to iron in the framework of the LTE assumption and the thermodynamic calculation according to SAHA-S EOS.  相似文献   
66.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   
67.
The paper presents results derived from study of the Silurian of the Nyuya-Berezovskii facial province. Variegated sedimentary rocks of the Meutian and Kurungian series (Llandoverian, Wenlockian, and lower Ludlovian) are studied. Detailed thermal demagnetizations of the collections revealed two stable magnetization components; one of them (Ds = 193.8, Is = 19.2; k = 10.7, α95 = 6.1) is bipolar and is likely to have formed during or shortly after the rock formation, i.e., in the interval from the Early Silurian to the beginning of the Late Silurian. The second component is unipolar and apparently metachronous, and its formation time can be bounded by the latest Early to the Middle Devonian. Based on the paleomagnetic results of this study, paleolatitudes and kinematics of Siberia are estimated for the Middle Paleozoic. The inferred paleomagnetic poles provide additional constraints on the Middle Paleozoic segment of the apparent polar wander path from the Siberian platform.  相似文献   
68.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   
69.
Rare-earth elements abundance in black shales of the Upper Jurassic (Tithonian Stage)–Lower Cretaceous (Berriassian Stage) Bazhenov Formation is discussed. This formation is the principal oil source rocks of West Siberia. The deposits within the formation can be subdivided into two main marine groups: (a) moderately hemipelagic deposits (clayey-siliceous, including phosphatic and carbonate rocks) and low-density distal clayey turbidites (argillites), both are considered as normal and (b) silty argillites and clayey-silt rocks, which are channel deposits and considered as anomalous. The hemipelagic rocks of normal sections, which are enriched in the rare-earth elements (REE), accumulated under both slow rates of sedimentation (clayey-siliceous rocks) and faster rates of sedimentation (argillites). The channel deposits of anomalous sections, which are impoverished in the REE, accumulated exclusively under fast rates of sedimentation.Within the hemipelagic group the rate of sedimentation of the argillites was faster than of the clayey-siliceous rocks, but the REE concentration in the former rocks (140.4 ppm) is higher than in the latter group (97.4 ppm). The argillites are more than twice enriched in clayey material than clayey-siliceous rocks. It is likely that the clay fraction was the main carrier of REE in these rocks. In the channel group of rocks, the REE abundance in clayey-silt rocks (21.2 ppm) is lower than in the silty argillite (84.6 ppm), in which the clay content is elevated.With respect to redox potential the Bazhenov Formation rocks can be subdivided further into three groups, based on the degree of pyritization index (DOP): (1) the highly reducing clayey-siliceous rocks of normal sections, with high DOP; (2) the substantially reducing argillites and carbonate rocks of normal sections, with intermediate DOP; (3) the moderately reducing rocks of anomalous sections with low DOP. The rocks with the high DOP (group 1) are characterized by ΣLREE/Σ(M+H)REE ratios between 7.37 and 7.5, whereas the rocks with the lower DOP (group 2 and 3) are characterized by ΣLREE/Σ(M+H)REE ratios between 12.8 and 13.5. Negative Ce anomalies are either small or absent in all deposits, which is typical for reducing conditions.Thus, the Bazhenov Formation exemplifies the complex depositional conditions that influence the REE concentration in black shale. However, it is this very complexity that has contributed to the development of six separate depositional models (REE contents in ppm are given in brackets). (1) Phosphatic clayey-siliceous rocks of normal sections (367.95); (2) argillites of normal sections (130.73); (3) clayey-siliceous rocks of normal sections (85.97); (4) carbonate rocks, largely dolomites of normal sections (23.23); (5) silty argillites of anomalous sections (78.7) and (6) clayey-silt rocks of anomalous sections (19.66).  相似文献   
70.
Ultramafic–mafic- and ultramafic-hosted Cu (Co, Ni, Au) volcanogenic massive sulfide (VMS) deposits from ophiolite complexes of the Main Uralian Fault, Southern Urals, are associated with island arc-type igneous rocks. Trace element analyses show that these rocks are geochemically analogous to Early Devonian boninitic and island arc tholeiitic rocks found at the base of the adjacent Magnitogorsk volcanic arc system, while they are distinguished both from earlier, pre-subduction volcanic rocks and from later volcanic products that were erupted in progressively more internal arc settings. The correlation between the sulfide host-rocks and the earliest volcanic units of the Magnitogorsk arc suggests a connection between VMS formation and infant subduction-driven intraoceanic magmatism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号