首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   14篇
地球物理   8篇
地质学   114篇
海洋学   7篇
天文学   4篇
自然地理   41篇
  2022年   1篇
  2016年   1篇
  2013年   13篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   1篇
  2006年   5篇
  2005年   7篇
  2004年   8篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   13篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   5篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1968年   1篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
  1963年   3篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
131.
Historic, sulphur-rich volcanic eruptions have altered global climate for as much as five years, and much larger events are known from the geologic record. At Scotts Bluff, Nebraska, Early Oligocene strata of the lower Arikaree Group contain a tephra bed with abundant calcite pseudomorphs after gypsum. Previous work has shown sulphate from the pseudomorphs in this tephra bears a high 17O anomaly indicative of oxidation of sulphur gases by ozone or hydrogen peroxide in the atmosphere. Possible sources of the tephra were caldera eruptions at about 28 Ma in the San Juan volcanic field of south-western Colorado (∼500 km SW of the study site) and the eastern Great Basin (∼1000 km WSW). The present sedimentological study shows that tephra and volcanogenic sulphate were deposited and preserved within a small, surface-discharging playa that developed on the irregular upper surface of aeolian siltstones of the subjacent White River Group. Sulphate solutions (including perhaps sulphuric acid) percolated downward within the vadose zone, dissolving early formed smectite cement within underlying volcaniclastic sandstones, reddening these rocks along an irregular alteration front. Preserved fine-scale stratification within the sandstones precludes the possibility that reddening took place during pedogenesis. Displacive growth of gypsum at the playa centre folded tephra beds and forced tephra into underlying sandstones, forming elongate cones. The large mass fraction of gypsum (now replaced by calcite) in the playa sediments suggests a huge, long-distance delivery of sulphate aerosols. Some of the sulphate and tephra may have come from the same eruption, or the fine-grained tephra may simply have aided preservation of dry-fog sulphate derived from an unrelated, effusive eruption of lava.  相似文献   
132.
Prograde suites of pelitic rocks were examined with electronmicroprobe and laser ablation inductively coupled plasma massspectrometry to determine the systematics of element partitioningbetween coexisting monazite, xenotime, and garnet. Monazitegrains that grew in equilibrium with xenotime are enriched inY and Dy compared with monazite that grew in xenotime-absentassemblages. Y and heavy rare earth element contents of monazitecoexisting with xenotime increase with rising temperature. Monazite–xenotimeY–Gd and Y–Dy partitioning is systematic withina metamorphic grade, and increases slightly with increasingmetamorphic grade, suggesting that monazite–xenotime pairsapproached partitioning equilibrium. Garnet and monazite inboth xenotime-bearing and xenotime-absent assemblages show astrong ( R2 = 0·94) systematic relationship between inversetemperature and ln(KEq) for the net-transfer equilibrium YAG+ OH-Ap + (25/4)Qtz = (5/4)Grs + (5/4)An + 3YPO4-Mnz + 1/2H2O,suggesting that garnet and monazite crystallized in compositionalequilibrium. The following temperature–KEq relationshipfor the equilibrium above has been derived:   相似文献   
133.
A stratigraphic motif observed in many foreland basins is the development of basinward tapering siliciclastic wedges characterized by various scales of depositional cycles. The Middle Devonian (Givetian) Mahantango Formation in the central Appalachian foreland basin is such an example. It consists of both small-and large-scale thickening- and coarsening-upward cycles; the small-scale cycles are typically less than 10 m thick whereas larger-scale cycles are generally a few tens of metres thick and commonly contain several of the smaller-scale cycles. Outcrop-based facies analyses indicate that the depositional cyclicity resulted from episodic progradation of a regionally straight, tide-dominated shoreline onto a storm-dominated, shallow marine shelf. The depositional model for this ancient shallow marine system consists of a vertical facies succession in which storm-dominated offshore marine mudstone and fine sandstone pass gradationally upward into storm-dominated nearshore marine shelf and shoreface sandstone overlain by, in proximal sections, tide-dominated shoreline sandstone, pebbly sandstone and mudstone. Transgressively reworked lag deposits cap most of the thickening- and coarsening- upward packets. In this model, coarse-grained rocks, rather than implying basinward shifts of facies, are a consanguineous part of the stacked shoaling cycles. Lateral facies relationships show that the dominance of storm- vs. tide-generated sedimentary features is simply a function of palaeogeographical position within the basin; proximal sections contain tidally influenced sedimentary features whereas more distal sections only display evidence for storm-influenced deposition. These results suggest caution when inferring palaeoceanographic conditions from sedimentological datasets that do not contain preserved examples of palaeoshorelines.  相似文献   
134.
Stratigraphic analyses of peat composition, LOI, pollen, spores, macrofossils, charcoal and AMS ages are used to reconstruct the peatland. vegetation and climatic dynamics in the Pur-Taz region of western Siberia over 5000 years (9300-4500 BP). Section stratigraphy shows many changes from shallow lake sediment to different combinations of forestcd or open sedge, moss, and Equisetum fen and peatland environments. Macrofossil and pollen data indicate that Larix sibirica and Beth pubescens trees were the first to arrive, followed by Picea obovata . The dominance of Picea macrofossils 6000-5000 BP in the Pur-Taz peatland along with regional Picea pollen maxima indicate warmer conditions and movement of the spruce treeline northward at this time. The decline of pollen and macrofossils from all of these tree species in uppermost peats suggests a change in the environment less favorable for their growth, perhaps cooler tempratures and/or less moisture. Of major significance is the evidence for old ages of the uppermost peats in this area of Siberia, suggesting a real lack of peat accumulation in recent millennia or recent oxidation of uppermost peat.  相似文献   
135.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   
136.
Large, well-developed flood tidal deltas on a barrier island coastline generally indicate a wave-dominated, microtidal sedimentary regime. Vibracores in a lagoon behind the barrier island Shackleford Banks, North Carolina contain an upward fining sequence of coarse-medium, very shelly sand, medium-fine laminated sand, fine-very fine cross-laminated sand and marsh mud. This sequence is interpreted as being a flood tidal delta deposit based on analogy with modern flood tidal delta sediments and represents lagoonal deposition in response to a migrating or closing inlet. The sand facies defined in lagoonal vibracores is found to be continuous beneath a lagoonal marsh and correlative with inlet sections identified in Shackleford Banks drill holes. The correlation of flood tidal delta deposits with inlet sequences in this microtidal environment indicates a close relationship between barrier and backbarrier inlet controlled sedimentation.  相似文献   
137.
A forward solution for the reflection response of a parallel stratified lossless medium characterized by discrete reflection coefficients and unequal layer delays, for a normally incident pressure source signal, is presented. The notation, which details the reflection history of each wavelet in a response record, facilitates systematic enumeration of all terms in the reflection impulse response model, the determination of compact closed form expressions for amplitudes and delays of multiply reflected wavelets, and the aggregation of dynamic analog groups. An equal delay time constraint on layer thicknesses leads then to the reflection sequence or synthetic seismogram structure as an infinite sum of wavelets by their order of reflection.  相似文献   
138.
The Basin Lakes are two adjacent maar lakes located in the centre of the Western Volcanic Plains District of Victoria, Australia. Both lakes are saline and alkaline; West Basin Lake is meromictic whereas East Basin is a warm monomictic lake. The carbonate mineral suite of the modern offshore bottom sediments of these Basins consists mainly of dolomite and calcite, with smaller amounts of hydromagnesite and magnesite in West Basin and monohydrocalcite in East Basin. The dolomite, hydromagnesite, magnesite, and monohydrocalcite are endogenic in origin, being derived by primary inorganic precipitation within the water columns of the lakes or at the sediment-water interface. The calcite is biologically precipitated as ostracod valves. In addition to the carbonates in the modern offshore (deep-water) sediments, the lakes also contain a girdle of nearshore carbonate hardgrounds. Both beachrock and microbialites (algal boundstones) are present. These modern lithified carbonate units exhibit a wide range of depositional and diagenetic fabrics, morphologies and compositions. In West Basin, the hardgrounds are composed mainly of dolomite, hydromagnesite, and magnesite, whereas dolomite and monohydrocalcite dominate the East Basin sediments. Aragonite, high-Mg calcite, kutnahorite, siderite, and protohydromagnesite also occur in these lithified carbonate units. Stratigraphic variations in the carbonate mineralogy of the Holocene sediment record in the lakes were used to help decipher the palaeochemistry and palaeohydrology of the Basins. These changes, in conjunction with fluctuations in organic remains and fossil content, indicate a pattern of lake level histories similar to that deciphered from other maar lakes in western Victoria.  相似文献   
139.
Flow properties of turbidity currents in Bute Inlet, British Columbia   总被引:1,自引:0,他引:1  
Bute Inlet, a fiord along the southwestern coast of British Columbia, Canada, includes a sea-floor sedimentation system 70 km in length which resembles those developed on some large submarine fans. Turbidity currents originate at the head of the flord on the submerged delta fronts of the Homathko and Southgate rivers. They move downslope for about 30 km within a single large incised channel, spill onto a depositional area termed the channel lobe complex, and finally spread out over a low-relief distal splay area that passes 55 km downslope into a flat basin floor. During the present study, turbidity currents in Bute Inlet were studied using sea-floor morphology, bottom sediment distribution, and in-situ instrument packages. The mean velocities of the most recent flows, estimated from surface sediment grain size, has varied between 100–120 cm s–1 in the incised channel, 20–50 cms–1 in the channel lobe complex, and < 5 cm s–1 on the basin floor. Velocities based on channel morphology are poorly constrained but are in the range of 160-425 cm s–1 in the upper part of the incised channel and 66 cm s–1 in the lower channel. Calculated flow densities range from 1.049 to 1.028g cm–3. Turbidity flows monitored in 1986 using submerged instrument packages exceeded 32 m in thickness in the upper part of the incised channel, where the maximum measured velocity was 330 cm s–1. At the head of the channel lobe complex the maximum velocity had declined to 75 cm s–1. The density of the monitored flows is estimated at 1.025-1.03g cm–3. The cored sediments and channel morphology yield estimates of mean flow velocities that are generally greater than those measured by the in-situ instrument packages and estimated from modern surface sediments. The former suggest past flow velocities up to 500 cm s–1 in the incised channel, about 20 cm s–1 in spillover deposits along the lower part of the incised channel, and 100-140 cm s–1 in the distal splay. The contrast between the velocities of modern and past flows suggests that past flows may have been considerably larger and more energetic than those presently occurring in Bute Inlet. The size properties of sediments in the monitored turbidity flows suggest a strong vertical size gradient in the suspended load during transport. The surface and cored sediments fine downslope from the channel lobe complex to distal splay area. Distinctive sedimentary sequences are recognized in cores from the spillover lobes, channel lobe complex, distal splay, and basin floor depositional areas. Many individual turbidites grade downslope from massive Ta divisions in the channel lobe complex and probably in the incised channel to Ta divisions overlain by slurried divisions on the distal splay and largely slurried beds on the basin floor. These facies suggest that individual currents commonly evolve from largely cohesionless suspensions in the incised channel and channel lobe complex to dilute cohesive slurries downslope on the distal splay and basin floor. Many flows in Bute Inlet fail to develop a traction state of sedimentation and the resulting turbidites lack well-developed Tb. Tc, and Td divisions.  相似文献   
140.
The surface microtopography of quartz grains in glacial depostis has often been attributed to mechanical release from source rocks during weathering and prior to entrainment by glaciers. Fractures on quartz particles, including subparallel and conchoidal features, often attributed to cryostatic pressure in ice and stick-slip processes at the base of glaciers, have been considered, in part, to result from mechanical weathering of source rocks. To test this hypothesis we studied 15 samples of supraglacial debris from the Adishy Glacier in the central Caucasus Mountains, USSR. Clasts in transport on the surface of the glacier originate primarily from the cirque headwall by weathering and mass wasting processes; a minor amount is presumed to have been derived from aeolian influx following reworking of older sediments down valley. The results show unequivocally that mechanical weathering is only likely to produce grains with pronounced fracture faces that lack subparallel and conchoidal fracture features. No fresh glacial-crushing type features were observed on these samples. Grains that had been glacially crushed, weathered and retransported, presumably by aeolian processes, were observed in four samples of the data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号