首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6086篇
  免费   1152篇
  国内免费   1494篇
测绘学   397篇
大气科学   1357篇
地球物理   1486篇
地质学   2926篇
海洋学   801篇
天文学   336篇
综合类   669篇
自然地理   760篇
  2024年   23篇
  2023年   104篇
  2022年   288篇
  2021年   336篇
  2020年   262篇
  2019年   277篇
  2018年   366篇
  2017年   289篇
  2016年   356篇
  2015年   301篇
  2014年   370篇
  2013年   363篇
  2012年   331篇
  2011年   330篇
  2010年   354篇
  2009年   329篇
  2008年   326篇
  2007年   298篇
  2006年   221篇
  2005年   168篇
  2004年   169篇
  2003年   144篇
  2002年   165篇
  2001年   160篇
  2000年   162篇
  1999年   282篇
  1998年   293篇
  1997年   256篇
  1996年   259篇
  1995年   199篇
  1994年   179篇
  1993年   136篇
  1992年   114篇
  1991年   91篇
  1990年   95篇
  1989年   72篇
  1988年   58篇
  1987年   54篇
  1986年   43篇
  1985年   25篇
  1984年   19篇
  1983年   10篇
  1982年   14篇
  1981年   13篇
  1980年   10篇
  1979年   4篇
  1977年   2篇
  1976年   3篇
  1938年   2篇
  1936年   3篇
排序方式: 共有8732条查询结果,搜索用时 15 毫秒
901.
NNR������ITRF��ȫ�����˶�ģ��   总被引:1,自引:0,他引:1  
????????ITRF2000???????????????????????????ITRF2000??1 mm/a????????????NNR??NUVEL1A?????????????NNR????;??????????????????????????????????ж?ITRF??????????NNR??????  相似文献   
902.
根据实际应用研制制冷控制系统,该系统采用温度测量、PID控制及PWM脉宽调制等技术实现了对目标对象的制冷处理,具有一定的应用价值。  相似文献   
903.
Extreme waves caused by tsunamis and storm surges can lead to soil failures in the near‐shore region, which may have severe impact on coastal environments and communities. Multiphase flows in deformable porous media involve several coupled processes and multiple time scales, which are challenging for numerical simulations. The objective of this study is to investigate the roles of the various processes and their interactions in multiphase flows in unsaturated soils under external wave loading, via theoretical time‐scale analysis and numerical simulations. A coupled geomechanics–multiphase flow model based on conservation laws is used. Theoretical analysis based on coupled and decoupled models demonstrates that transient and steady‐state responses are governed by pore pressure diffusion and saturation front propagation, respectively, and that the two processes are essentially decoupled. Numerical simulations suggest that the compressibility of the pore fluids and the deformation of the soil skeleton are important when the transient responses of the media are of concern, while the steady‐state responses are not sensitive to these factors. The responses obtained from the fully coupled numerical simulations are explained by a simplified time‐scale analysis based on coupled and decoupled models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
904.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   
905.
Vegetation changes can significantly affect catchment water balance. It is important to evaluate the effects of vegetation cover change on streamflow as changes in streamflow relate to water security. This study focuses on the use of statistical methods to determine responses in streamflow at seven paired catchments in Australia, New Zealand, and South Africa to vegetation change. The non‐parametric Mann–Kendall test and Pettitt's test were used to identify trends and change points in the annual streamflow records. Statistically significant trends in annual streamflow were detected for most of the treated catchments. It took between 3 and 10 years for a change in vegetation cover to result in significant change in annual streamflow. Presence of the change points in streamflow was associated with changes in the mean, variance, and distribution of annual streamflow. The streamflow in the deforestation catchments increased after the change points, whereas reduction in streamflow was observed in the afforestation catchments. The streamflow response is mainly affected by the climate and underlying vegetation change. Daily flow duration curves (FDCs) for the whole period and pre‐change and post‐change point periods also were analysed to investigate the changes in flow regime. Three types of vegetation change effects on the flow regime have been identified. The relative reductions in most percentile flows are constant in the afforestation catchments. The comparison of trend, change point, and FDC in the annual streamflow from the paired experiments reflects the important role of the vegetation change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
906.
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
907.
For many incised channels, one of the most common strategies is to install some hard structures, such as grade‐control structures (GCSs), in the riverbed to resist further incision. In this study, a series of experiments, including both steady and unsteady flow conditions, were conducted to investigate the scouring process downstream of a GCS. Three distinct phases, including the initial, developing and equilibrium phases, during the evolution of scour holes were identified. In addition, a semi‐empirical method was proposed to predict the equilibrium scour‐hole profile for the scour countermeasure design. In general, the comparisons between the experimental and simulated results are reasonably consistent. As the studies on temporal variation of the scour depth at GCSs caused by floods are limited, the effect of flood hydrograph shapes on the scour downstream of GCSs without upstream sediment supply was also investigated experimentally in this study. Based on the dimensional analysis and the concept of superposition, a methodology is proposed to simulate the time evolution of the maximum scour depth downstream of a GCS for steady flows. Moreover, the proposed scheme predicts reasonably well the temporal variations of the maximum scour depth for unsteady flows with both single and multiple peak. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
908.
Wang  ZhenQi  Zhi  DongMing  Zhang  ChangMin  Xue  XinKe  Zhang  ShangFeng  Li  TianMing  Yang  Fei  Liu  LouJun  Cheng  Liang  Lu  Dong  Zhou  FengJuan  Chen  YuanYong 《中国科学:地球科学(英文版)》2010,52(1):106-114

Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.

  相似文献   
909.
This study focuses on the three‐dimensional (3‐D) characteristics of wave propagation in pipe‐pile using elastodynamic finite integration technique. First, a real 3‐D pile‐soil model in cylindrical coordinate system is presented. Then, the governing equations are established. With the boundary and initial conditions, the numerical solution is obtained. The accuracy and feasibility of the self‐written code are further verified via comparing with the measured data. Velocity histories at different angles of pile top and pile tip are illustrated, and the snapshots reflecting the 3‐D characteristics of wave propagation are given. It shows that the interferences of Rayleigh waves can confuse the result interpretation for pile integrity testing. The increase of hammer contact time can effectively mitigate the interferences, and the interferences of Rayleigh waves are weakest at an angle of 90° from where hammer hits. Besides, surrounding soil can partly mitigate the wave interferences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
910.
In this study, on the basis of the Floquet transform method, a numerical model for the simulation of the vibration isolation via multiple periodic pile rows with infinite number of piles is established. By means of the fictitious pile method due to Muki and Sternberg, the second kind of Fredholm integral equations for the pile rows are developed by using the fundamental solutions for the half‐space and the compatibility conditions between the piles and half‐space. Employing the Floquet transform method, integral equations for the pile rows in the wavenumber domain are then derived. Solution of the integral equations yields the wavenumber domain solution for the pile rows. The space domain solution can then be retrieved by inversion of the Floquet transform. Numerical results show that the proposed model with the Floquet transform method is in a good agreement with those of the conventional direct superposition method. On the basis of the new model, influences of the spacing between neighboring piles, the Young's modulus of the piles, and the pile length on the vibration isolation effect of the pile rows are investigated. Numerical simulations conducted in this study show that compared with the direct superposition method, the efficiency of the proposed model for simulation of the vibration isolation via pile rows is very high. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号