首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   12篇
  国内免费   3篇
测绘学   9篇
大气科学   67篇
地球物理   123篇
地质学   324篇
海洋学   36篇
天文学   109篇
综合类   4篇
自然地理   23篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   17篇
  2015年   10篇
  2014年   16篇
  2013年   31篇
  2012年   12篇
  2011年   28篇
  2010年   24篇
  2009年   42篇
  2008年   19篇
  2007年   28篇
  2006年   19篇
  2005年   27篇
  2004年   20篇
  2003年   17篇
  2002年   15篇
  2001年   8篇
  2000年   14篇
  1999年   10篇
  1998年   7篇
  1997年   15篇
  1996年   7篇
  1995年   8篇
  1994年   11篇
  1993年   9篇
  1992年   8篇
  1990年   7篇
  1987年   9篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1982年   16篇
  1981年   10篇
  1980年   13篇
  1979年   5篇
  1978年   7篇
  1977年   8篇
  1976年   9篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1972年   5篇
  1971年   9篇
  1970年   5篇
  1968年   6篇
  1967年   7篇
  1959年   7篇
  1954年   5篇
排序方式: 共有695条查询结果,搜索用时 15 毫秒
51.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   
52.
During the last two decades, important advances have been made in the investigation of gravity waves. However, more efforts are needed to study certain aspects of gravity waves. In the real atmosphere, gravity waves occur with different properties at different altitudes and, most often, simultaneously. In this case, when there is more than one dominant wave, the determination of gravity wave characteristics, such as the vertical wavelength and the phase velocity, is difficult. The interpretation of temperature perturbation plots versus the altitude and time as well as the application of the Fourier spectral analysis can produce errors.Exact knowledge of the wave characteristics is important both for determination of other characteristics, for example, the horizontal wave components, and for study of wave climatology. The wavelet analysis of vertical temperature profiles allows one to examine the wave's location in space. Up to now, gravity waves have been studied mainly by continuous wavelet transformation to determine dominant waves. We apply wavelet analysis to a time series of temperature profiles, observed by the ALOMAR ozone lidar at Andoya, Norway, and by the U. Bonn lidar system at ESRANGE, Sweden, both for determination of the dominant waves and for specifying the vertical wavelengths and the vertical component of the phase velocities. For this purpose, the wavelet amplitude spectra and the wavelet phase spectra are filtered and Hovmöller diagrams for dominant wavelengths are constructed. The advantage of this type of diagrams is that they give clear evidence for the localization of the dominant waves in space and time and for the development of their phase fronts.  相似文献   
53.
Single crystals of Li-aegirine LiFe3+Si2O6 were synthesized at 1573?K and 3?GPa, and a polycrystalline sample suitable for neutron diffraction was produced by ceramic sintering at 1223?K. LiFe3+Si2O6 is monoclinic, space group C2/c, a=9.6641(2)?Å, b= 8.6612(3)?Å, c=5.2924(2)?Å, β=110.12(1)° at 300?K as refined from powder neutron data. At 229?K Li-aegirine undergoes a phase transition from C2/c to P21 /c. This is indicated by strong discontinuities in the temperature variation of the lattice parameters, especially for the monoclinic angle β and by the appearance of Bragg reflections (hkl) with h+k≠2n. In the low-temperature form two non-equivalent Si-sites with 〈SiA–O〉=1.622?Å and 〈SiB–O〉=1.624?Å at 100?K are present. The bridging angles of the SiO4 tetrahedra O3–O3–O3 are 192.55(8)° and 160.02(9)° at 100?K in the two independent tetrahedral chains in space group P21 /c, whereas it is 180.83(9)° at 300?K in the high-temperature C2/c phase, i.e. the chains are nearly fully expanded. Upon the phase transition the Li-coordination changes from six to five. At 100?K four Li–O bond lengths lie within 2.072(4)–2.172(3)?Å, the fifth Li–O bond length is 2.356(4)?Å, whereas the Li–O3?A bond lengths amount to 2.796(4)?Å. From 57Fe Mössbauer spectroscopic measurements between 80 and 500?K the structural phase transition is characterized by a small discontinuity of the quadrupole splitting. Temperature-dependent neutron powder diffraction experiments show first occurrence of magnetic reflections at 16.5?K in good agreement with the point of inflection in the temperature-dependent magnetization of LiFe3+Si2O6. Distinct preordering phenomena can be observed up to 35?K. At the magnetic phase transition the unit cell parameters exhibit a pronounced magneto-striction of the lattice. Below T N Li-aegirine shows a collinear antiferromagnetic structure. From our neutron powder diffraction experiments we extract a collinear antiferromagnetic spin arrangement within the ac plane.  相似文献   
54.
Measurements of tritium and 18O concentrations in precipitation and runoff were used to provide further insight into the groundwater storage properties of the Wimbachtal Valley, a catchment area of 33.4 km2, extending between 636 and 2713 m a.s.l. in the Berchtesgaden Alps. The catchment includes three aquifer types: a dominant porous aquifer; a fractured dolomite; a karstic limestone aquifer. Employing a simple hydrological model, information about mean transit times of environmental tracers is derived for the groundwater runoff component and several karst springs from the application of the exponential and dispersion flow models to the isotopic input and output data. The mean transit times calculated from a dispersion model with transit times of 4.1 years for 18O and 4.2 years for tritium, which agree well, allow calculation of total (mobile + stagnant) groundwater storage volume, which is equivalent to 6.6 m of water depth. Direct runoff appears negligible as in many other cases.  相似文献   
55.
Zusammenfassung Der Vergleich der Gitterkonstanten und der Atomparameter von Amblygonit LiAI[PO4](OH,F), Kieserit Mg[SO4](H2O) und Titanit CaTi[SiO4](O) zeigt, daß diese Strukturen analog gebaut sind. Das Geriist von tetraedrischen und oktaedrischen Koordinationspolyedern ist in allen 3 Fallen gleich. Die Grundstruktur ist die des Kieserits. Die Amblygonitstruktur entsteht aus ihr durch Verzerrung und Auffüllung mit einem weiteren Bauelement, dem Li, die Titanitstruktur nur durch Auffullung ohne Symmetrieverminderung.  相似文献   
56.
Zusammenfassung In Ergänzung zum FortschrittsberichtKürstens werden geologische Probleme des Schottischen Kristallins diskutiert unter Betonung der petrographischen Betrachtungsweise und Verwertung eigener Feld- und Schliffbeobachtungen.  相似文献   
57.
58.
Zusammenfassung Im Sommer 1952 wurden von Prof.Otto Jaag im Zürichsee cine Reihe von Tiefenbohrungen ausgeführt. Ein Bohrkern von 830 cm L?nge, der in 140 m Seetiefe entnommen worden war, wurde pollenanalytisch durchge-gearbeitet. Der See erreicht an dieser Stelle seine gr?sste Tiefe, und sein Boden ist auf einer Fl?che von 1000 m Breite und 7000 m L?nge ganz flach, was dafür Gew?hr bietet, dass die Sedimentation ungest?rt vor sich gehen konnte. Der Bohrkern bestand aus tonreichem Mergel oder unreiner Soekreide, mit einzelnen Einlagerungen von Sand (Abb. 2). Er reichte bis in die waldfreie Zeit des Sp?tglazials hinab. Die Ergebnisse der Pollenanalyse sind in den Abbildungen 2 und 3 zusammengestellt. In Abbildung 2, rechts aussen, wird versucht, die Ablagerung nach den Zeitstufen vonBlytt-Sernander undFranz Firbas zu gliedern. Dabei ergaben sich Schwierigkeiten, und es ist fraglich, ob die natürlichen Grenzen in unserm Diagramm mit der zeitlich festgelegten Periodeneinteilung der oben genannten Forscher immer in übereinstimmung gebracht werden k?nnen. Auch wenn die gleiche Waldfolge gefunden wird, so dürften die Waldzeiten im Alpenvorland teilweise wesentlich früher in Erscheinung getreten sein als weiter gegen Norden hin.
Summary During the summer of 1952 several deep boring into the underground of the Zürich-see were carried out by Prof. Dr.O. Jaag. One boring core with a length of 830 cm obtained under 140 m lake water was carefully investigated by pollenanalysis. In the spot from where this core originated, the lake reaches its greatest depth and its bottom is entirely flat within an area of 1000 m to 7000 m, which guarantees that the sedimentary process could continue without disturbance. The boring core consisted of loamy marl or lake-lime (Seekreide) with very few sandy layers (Fig. 2). The eldest samples date from woodless late-glacial time. Results of pollenanalysis are summarized in Figures 2 and 3. In Figure 2 (right outside) it was tried to divide the deposit into time-periods according toBlytt-Sernander andF. Firbas. However there arose certain difficulties and it remains doubtful, whether the natural limits in our diagram agree in each case with the fixed periods of the above named authors. Even where the same sequence of forest-development is found it is likely that some of the same forestperiods were realized considerably earlier in the foreland of the Alps than in northernmore parts of Europe.


Die vorliegende Studie bildet einen Bestandteil der von Prof. Dr.O. Jaag organisierten Sediment-Untersuchung im Zürichsee. Die Durchführung der Bohrungen, die im Jahre 1952 stattfanden, wurde erm?glicht dank grosszügiger finanzieller Unterstützung durch dieVolkart-Stiftung, Winterthur, durch dieKulturkommission der Gemeinde Zollikon ZH sowie durch dieBeh?rden der Stadt und des Kantons Zürich. Bisher wurde ver?ffentlicht:H. Züllig,Sedimente als Ausdruck des Zustandes eines Gew?ssers, Schweiz. Z. Hydrol.18 (1956).  相似文献   
59.
The Peruvian coastal belt between Cañete and San Juan includes three geological units: The Coastal Cordillera on the west, the foothills of the High Sierra on the east, and the Para-Andean trough in between. Igneous, sedimentary and metamorphic rocks form a sequence ranging in age from Paleozoic (or Pre-Cambrian?) to Cenozoic, with various gaps. The area lies in a mobile belt, which was folded in late Paleozoic, Jurassic (Nevadian), and upper Cretaceous times. Further tectonic activity, involving warping and block faulting, occurred in the late Tertiary, and suggests an approach to cratonic conditions. Tectonic events were accompanied by emplacement of magmatic suites. There is no evidence for a Pacific landmass.  相似文献   
60.
The optical and x-ray investigation of 51 microcrystalline quartz samples show that they are built up of fibrous chalcedony (agates) or finest crystalline, isometric grained quartz (flints, cherts, jasper or Chrysoprase). These samples were examined by standardized d.t.a. — methods in order to get their inversion characteristics.
  1. A third of the samples conteins low-temperature cristobalite in addition to quartz (in two samples even as main component); the high-low inversion of this mineral lies between 80 and 245° C according to its defect character. In five samples of jasper low- tridymite is occurring as minor component.
  2. In contrary to macrocrystalline quartz crystals microcrystalline quartzes generally show no sharp inversion point. The inversion takes place over an interval of nearly 50° C, to be seen in the d.t.a. curve as a broad, only slightly endothermic effect with hardly visible peak or several small minima. In the curves of 15 samples no inversion could be detected. This broad inversion peak is caused by different defect characters of the crystals or even of parts of the crystals which invert at different temperatures (Flörke, 1955).
  3. There is no dependance of t i on the size of crystallites at least for crystals with diameter greater than 0.05 μ. The temperature of the most prominent inversion minimum allows a division of the microcrystalline quartz crystals analogous the macrocrystalline classification into samples with t i below and above 570° C. The lowest (518±2° C) and the highest t i (578,7+0,3° C) were measured at different parts of the same sample of a Chrysoprase.
  4. The intensity of the brown and red coloured parts of agate and jasper grows with increasing Fe2O3-content, but there is no connection between t i and chemical composition.
  5. As in macrocrystalline quartzes of caverns and veins there are also some t i -differences between the marginal and the central parts of agates or jaspers. The explanation lies in the mechanism of formation: higher t i in the margin (e.g. in one globular jasper) points to a formation by silification, whereas higher t i in the center indicates a formation by the filling up of cavities and veins.
  6. The variation in t i of microcrystalline quartzes and the comparison of these t i ? with those of associated low-temperature cristobalite shows a connection between temperatures of formation and inversion: samples with low t i (i.e. with a great number of defects) should be formed at low temperatures, that is by sedimentary or diagenetic processes, and samples with t i above 570° C (i.e. nearly without defects in the structure) should have crystallized out of hydrothermal solutions. The weak inversion peaks below 570° which in d.t.a. curves often appear besides a main peak at 570° C represent the small amount of diagenetically formed microcrystalline quartz with a large degree of defect character.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号