首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   7篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   50篇
地质学   75篇
海洋学   52篇
天文学   24篇
综合类   1篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   14篇
  2008年   14篇
  2007年   9篇
  2006年   8篇
  2005年   16篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   9篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   4篇
  1963年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
61.
Located at southern coast of China, the Pearl River Delta (PRD) is facing serious water problems in both quantity and quality after its rapid urbanization in the last decade. Most remarkably, the local groundwater, that was used to be the source of drinking water before the urbanization was polluted due to poor management of the septic tanks. In order to study the effects of suburban development on local groundwater flow and water quality in the PRD region, Fengcun of Guangzhou has been chosen as the study area. In Fengcun, drinking water was groundwater before the 1990s, but now piped reservoir water is used by each family because the groundwater has been polluted. This study clarifies the source and process of the groundwater pollution from septic tanks using isotopic and geochemical characteristics, especially nitrate (NO3?) concentrations. Water samples were collected from the wells and ponds in Fengcun in March and July 2005 and in July 2006. Based on the pe–pH diagram, NO3? and ammonium of groundwater are from the effect of human activities, rather than from nitrification and ammonification of N2. NO3? pollution of groundwater is from point sources, and NO3? concentrations decrease from northeast to southwest. Groundwater is polluted rapidly by the leakage of septic tanks. NO3? concentrations of pollution sources were lower than 20 mg l?1 in March 2005, but had increased to about 120 mg l?1 in July 2006. This implies that groundwater protection should be strengthened in rural areas of the PRD. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
A phase transition in pure CaSiO3 perovskite was investigated at 27 to 72 GPa and 300 to 819 K by in-situ X-ray diffraction experiments in an externally-heated diamond-anvil cell. The results show that CaSiO3 perovskite takes a tetragonal form at 300 K and undergoes phase transition to a cubic structure above 490–580 K in a pressure range studied here. The transition boundary is strongly temperature-dependent with a slightly positive dT / dP slope of 1.1 (± 1.3) K/GPa. It is known that the transition temperature depends on Al2O3 content dissolved in CaSiO3 perovskite [Kurashina et al., Phys. Earth Planet. Inter. 145 (2004) 67–74]. The phase transition in CaSiO3(+ 3 wt.% Al2O3) perovskite therefore could occur in a cold subducted mid-oceanic ridge basalt (MORB) crust at about 1200 K in the upper- to mid-lower mantle. This phase transition is possibly ferroelastic-type and may cause large seismic anomalies in a wide depth range.  相似文献   
63.
The stability and high-pressure behavior of perovskite structure in MnGeO3 and CdGeO3 were examined on the basis of in situ synchrotron X-ray diffraction measurements at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the structural distortion of orthorhombic MnGeO3 perovskite is enhanced with increasing pressure and it undergoes phase transition to a CaIrO3-type post-perovskite structure above 60 GPa at 1,800 K. A molar volume of the post-perovskite phase is smaller by 1.6% than that of perovskite at equivalent pressure. In contrast, the structure of CdGeO3 perovskite becomes less distorted from the ideal cubic perovskite structure with increasing pressure, and it is stable even at 110 GPa and 2,000 K. These results suggest that the phase transition to post-perovskite is induced by a large distortion of perovskite structure with increasing pressure.  相似文献   
64.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   
65.
66.
Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.  相似文献   
67.
To study the wind field within the atmospheric boundary layer over the Tokyo metropolitan area, Doppler lidar observations were made 45 km north of Sagami Bay and 30 km west of Tokyo Bay, from 14 May to 15 June 2008. Doppler lidar on 27 May 2008 observed the vertical and horizontal wind structure of a well-developed sea-breeze front (SBF) penetrating from Sagami Bay. At the SBF, a strong updraft (maximum w approximately equal to 5 m s−1) was formed with a horizontal scale of about 500 m and vertical scale of 2 km. The spatial relationship between the strong updraft over the nose of the SBF and prefrontal thermal suggests that the strong updraft was triggered by interaction between the SBF and the thermal. After the updraft commenced, a collocated ceilometer observed an intense aerosol backscatter up to 2 km above ground level. The observational results suggest that the near-surface denser aerosols trapped in the head region of the SBF escaped from the nose of the SBF and were then vertically transported up to the mixing height by the strong updraft at the SBF. This implies that these phenomena occurred not continuously but intermittently. The interaction situations between the SBF and prefrontal thermal can affect the wind structure at the SBF and the regional air quality.  相似文献   
68.
Stabilities of hexagonal new aluminous (NAL) phase and Ca-ferrite-type (CF) phase were investigated on the join NaAlSiO4-MgAl2O4 in a pressure range from 23 to 58 GPa at approximately constant temperature of 1,850 K, on the basis of in situ synchrotron X-ray diffraction measurements in a laser-heated diamond-anvil cell. The results show that NAL is formed as a single phase up to 34 GPa, NAL + CF between 34 and 43 GPa, and only CF at higher pressures in 40%NaAlSiO4-60%MgAl2O4 bulk composition. On the other hand, both NAL and CF coexist below 38 and 36 GPa, and only CF was obtained at higher pressures in 60%NaAlSiO4-40%MgAl2O4 and 20%NaAlSiO4-80%MgAl2O4 composition, respectively. These results indicate that NAL appears only up to 46 GPa at 1,850 K, and CF forms continuous solid solution at higher pressures on the join NaAlSiO4-MgAl2O4. NAL has limited stability in subducted mid-oceanic ridge basalt crust in the Earth’s lower mantle and undergoes a phase transition to CF in deeper levels.  相似文献   
69.
70.
Abstract— Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large‐scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller‐scale cutting capabilities previously described (Westphal 2004; Ishii 2005a, 2005b) for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis. The capability has been implemented in the Stardust Laboratory at NASA's Johnson Space Center as one of a suite of aerogel cutting methods to be used in Stardust sample curation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号