首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
大气科学   2篇
地球物理   10篇
地质学   7篇
天文学   1篇
自然地理   5篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
In ancient times human activities were tightly related and sensitive to rainfall amounts and seasonal distribution. East Mediterranean settlements were concentrated around numerous small to large springs, such as the Judean Mountains area. The goals of this study were to determine (a) the sensitivity of total discharge, recession curve, and response time of such springs to annual precipitation patterns, and (b) how spring hydrology responds to series of drought or wet years and to transitions from drought to normal and/or wet episodes (and vice versa). These goals were achieved by setting a finite-element hydro-geological flow model for selected perched springs that characterize the numerous springs throughout the carbonate karst terrain in the Judean Mountains. In addition, we estimated the effect of proposed regional past climate changes on the springs; in so doing, we transfer climate change to community size, livelihood and economic strength that were highly dependent on agricultural productivity. The results of the hydro-geological model revealed that these mountainous communities had the potential to prosper during historically wetter episodes and were probably adapted to short-term variability in annual rainfall. However, moderate to extreme droughts lasting only a few years could have led to a partial or even total abandonment of the springs as focal sites of intensive agricultural production. Spring drying eliminated the primary cause for the location of settlement. This occurred simultaneously in numerous settlements around the mountains of the southern Levant and therefore, must have caused dramatic economic and societal changes in the entire region, perhaps even resonating afar.  相似文献   
12.
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.  相似文献   
13.
Holocene paleoclimates of India   总被引:4,自引:0,他引:4  
We present a comprehensive summary of the available palaeoclimate records from India and compare the results from different proxies. The results indicate (i) fluctuating lake levels during the early Holocene. The period of relatively higher lake levels from increased precipitation efficiency was reached only 7.2–6.0 cal kyr BP, possibly due to increased contribution from winter rainfall; (ii) the onset of aridity in NW India could have begun as early as 5.3 cal kyr BP. Subsequently, there were multiple wet events but of shorter duration and smaller magnitude than during the mid Holocene; (iii) there is evidence of several short term climate events in the proxy record. However, in the absence of a rigorous chronological framework a detailed regional correlation is not possible at this stage. Finally, a comparison between marine and terrestrial records indicates that episodes of strongest and weakest monsoon winds were not always associated with wettest and driest episodes respectively in the NW Indian lakes.  相似文献   
14.
Modern-day synoptic-scale eastern Mediterranean climatology provides a useful context to synthesize the diverse late Pleistocene (60–12 ka) paleohydrologic and paleoenvironmental indicators of past climatic conditions in the Levant and the deserts to its south and east. We first critically evaluate, extract, and summarize paleoenvironmental and paleohydrologic records. Then, we propose a framework of eastern Mediterranean atmospheric circulation features interacting with the morphology and location of the southeast Mediterranean coast. Together they strongly control the spatial distribution of rainfall and wind pattern. This cyclone–physiography interaction enforces the observed rainfall patterns by hampering rainfall generation south and southeast of the latitude of the north Sinai coast, currently at 31°15′.The proposed framework explains the much-increased rains in Lebanon and northern Israel and Jordan as deduced from pollen, rise and maintenance of Lake Lisan, and speleothem formation in areas currently arid and semiarid. The proposed framework also accounts for the southward and eastward transition into semiarid, arid, and hyperarid deserts as expressed in thick loess accumulation at the deserts' margins, dune migration from west to east in the Sinai and the western Negev, and the formation of hyperarid (< 80 mm yr− 1) gypsic–salic soils in the southern Negev and Sinai. Our climatic synthesis explains the hyperarid condition in the southern Negev, located only 200–250 km south of the much-increased rains in the north, probably reflecting a steeper rainfall gradient than the present-day gradient from the wetter Levant into its bordering southern and eastern deserts.At present, the rainiest winter seasons in Lebanon and northern and central Israel are associated with more frequent (+ 20%), deeper Cyprus Lows traversing the eastern Mediterranean at approximately the latitude of southern Turkey. Even these wettest years in northern Israel do not yield above average annual rainfall amounts in the hyperarid southern Negev. This region is mainly influenced by the Active Red Sea Troughs that produce only localized rains. The eastern Mediterranean Cyprus Lows also produce more dust storms and transport higher amounts of suspended dust to the loess area than any other atmospheric pattern. Concurrent rainfall and dust are essential to the late Pleistocene formation of the elongated thick loess zone along the desert northern margin. Even with existing dust storms, the lack of rain and very sparse vegetation account for the absence of late Pleistocene loess sequences from the southern Negev and the formation of hyperarid soils.When the north Sinai coast shifted 30–70 km northwest due to last glacial global sea level lowering, the newly exposed coastal areas supplied the sand and dust to these active eastern Mediterranean cyclones. This enforced the latitude of the northern boundary of the loess zone to be directly due east of the LGM shoreline. This shift of coast to the northwest inhibited rainfall in the southern Levant deserts and maintained their hyperaridity. Concurrently, frequent deep eastern Mediterranean Cyprus Lows were funneled along the northern Mediterranean increasing (probably doubling) the rains in central and northern Israel, Lebanon, southwestern Syria and northern Jordan. These storms and rains formed lakes, forests, and speleothems only a short distance north of the deserts in the southern Levant.  相似文献   
15.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
16.
Documenting hillslope response to hydroclimatic forcing is crucial to our understanding of landscape evolution. The evolution of talus-pediment sequences (talus flatirons) in arid areas was often linked to climatic cycles, although the physical processes that may account for such a link remain obscure. Our approach is to integrate field measurements, remote sensing of rainfall and modeling to link between storm frequency, runoff, erosion and sediment transport. We present a quantitative hydrometeorological analysis of rainstorms, their geomorphic impact and their potential role in the evolution of hyperarid talus-pediment slopes in the Negev desert, Israel. Rainstorm properties were defined based on intensity–duration–frequency curves and using a rainfall simulator, artificial rainstorms were executed in the field. Then, the obtained measured experimental results were up-scaled to the entire slope length using a fully distributed hydrological model. In addition, natural storms and their hydro-geomorphic impacts were monitored using X-band radar and time-lapse cameras. These integrated analyses constrain the rainfall threshold for local runoff generation at rain intensity of 14 to 22 mm h-1 for a duration of five minutes and provide a high-resolution characterization of small-scale runoff-generating rain cells. The current frequency of such runoff-producing rainstorms is ~1–3 per year. However, extending this local value into the full extent of hillslope runoff indicates that it occurs only under rainstorms with ≥ 100-years return interval, or 1% annual exceedance probability. Sheetwash efficiency rises with downslope distance; beyond a threshold distance of ~100 m, runoff during rainstorms with such annual exceedance probability are capable of transporting surface clasts. The erosion efficiency of these discrete rare events highlights their potential importance in shaping the landscape of arid regions. Our results support the hypothesis that a shift in the properties and frequency of extreme events can trigger significant geomorphic transitions in areas that remained hyperarid during the entire Quaternary. © 2020 John Wiley & Sons, Ltd.  相似文献   
17.
The geomorphic evolution of the Jordan River in recent decades indicates that interaction between incision and high-magnitude floods controls sinuosity changes under increasing mouth gradients during base-level fall. The evolution of the river was analyzed based on digital elevation models, remotely sensed imagery, hydrometric data, and a hydraulic model. The response varies along the river. Near the river mouth, where incision rate is high and a deep channel forms, overbank flooding is less likely. There, large floods exert high shear stress within the confined channel, increasing sinuosity. Upstream, near the migrating knickzone channel gradients also increase, incision is more moderate and floods continue to overtop the banks, favoring meander chute cutoffs. The resulting channel has a downstream well-confined meandering segment and an upstream low-sinuosity segment. These new insights regarding spatial differences along an incising channel can improve interpretations of the evolution of ancient planforms and floodplains that responded to base-level decline. © 2018 John Wiley & Sons, Ltd.  相似文献   
18.
Meandering channels and valleys are dominant landscape features on Earth. Their morphology and remnants potentially indicate past base-level fluctuations and changing regional slopes. The prevailing presence of meandering segments in low-slope areas somewhat confuses the physically based relationships between slope and channel meandering. This relationship underlies a fundamental debate: do incised sinuous channels actively develop during steepening of a regional slope, or do they inherit the planform of a preexisting sinuous channel through vertical incision? This question was previously explored through reconstructed evolution of meandering rivers, numerical simulations, and controlled, scaled-down laboratory experiments. Here, we study a rare, field-scale set of a dozen adjacent perennial channels, evolving in recent decades in a homogeneous erodible substrate in response to the Dead Sea level fall (> 30 m over 40 years). These channels are fed by perennial springs and have no drainage basin or previous fluvial history; they initiated straight and transformed into incising meandering channels following the emergence of the preexisting lake bathymetry, which resulted in increased channel lengths and regional slopes at different rates for each channel. This field setting allows testing the impact of changing regional slope on the sinuosity of a stream in the following cases: (a) relatively long and low-gradient shelf-like margins, (b) a sharp increase in the basinward gradient at the shelf-slope transition, and (c) gradually steepening slopes. Under a stable and low valley slope, the channels mainly incise vertically, inheriting a preexisting sinuous pattern. When the regional slope steepens, the channels start to meander, accompanying the vertical incision. The highest sinuosity evolved in the steepest channel, which also developed the deepest and widest valley. These results emphasize the amplifying impact of steepening regional slope on sinuosity. This holds when the flow is confined and chute cutoffs are scarce.  相似文献   
19.
Determining sediment discharge out of watersheds is a global, long-term challenge. In the vast, usually data-poor, hyperarid regions of the world, this is a greater challenge. Here, we present a unique, decades-long dataset of individual floods and their respective sediment discharge out of Nahal Yael, an experimental, well-instrumented, hyperarid (~25–30 mm year−1) watershed in southern Israel. The high correlation between directly measured sediment yield by discrete individual floods and their respective total energy, represented by flood-integrated stream power (FISP), serves here as a rating curve. Using this rating curve, the 51-year-long series of FISP in Nahal Yael, calculated from the detailed individual flood hydrographs, was converted into a series of sediment yield by these floods. This, in turn, allows determining the long-term frequency-magnitude of sediment exported out of this hyperarid basin. This can assist in landscape evolution modeling, in testing impacts of flood frequency changes enforced by altered regional climatology, and hint at changes needed in forming the observed alluvial fans. We conclude that, at the decadal scale, moderate floods are the most effective in terms of total sediment transport. However, the recurrence intervals of these moderate hyperarid floods are longer than in temperate regions and reach 5–10 years.  相似文献   
20.
Late Quaternary playa (stand-water) deposits are present in river channels upstream from dune fields in the northwestern Negev and represent a drainage disordering caused by dune migration during periods of aridity. These deposits are associated with modifications in the drainage system, including course changes and piracy, caused by dunes blocking drainage networks. Radiocarbon dates from the standing-water sediments indicate the occurrence of two periods of aridity: (1) 20,900 to 16,000 years B.P. and (2) 11,680 to 10,300 years B.P. These two periods indicate a correlation between glacial advances in Europe and dry intervals in the Near East during the Upper Pleistocene. We suggest that spatial and temporal associations between standing-water deposits, modifications in stream direction, soil formation and the dunes themselves can serve as a good indicator for the timing of dune migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号