首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   26篇
  国内免费   49篇
测绘学   13篇
大气科学   65篇
地球物理   12篇
地质学   40篇
海洋学   12篇
综合类   7篇
自然地理   7篇
  2023年   1篇
  2022年   9篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2017年   8篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   1篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
101.
The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity   总被引:8,自引:3,他引:5  
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity.It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current.On an f-plane,the rate of intensification of a tropical cyclone is larger than that of the uniform flow.A TC on a β-plane intensifies slower than one on an f-plane.The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced.But a fairly symmetric TC structure is simulated on an f-plane.The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane,the convection tends to be symmetric,which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core.On the other hand,horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense.This advective process is due to the tilt of the vortex as a result of the β-effect.A similar situation occurs in the presence of a uniform flow.Thus,the asymmetric horizontal advection of temperature plays an important role in the temperature distribution.Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere.However,the total AM exports at the upper levels for a TC either on aβ-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km,and hence there is a lesser intensification.  相似文献   
102.
A ubiquitous feature of the Yellow Sea (YS) is the frequent occurrence of the sea fog in spring and summer season. An extremely dense sea fog event was observed around the Shandong Peninsula in the morning of 11 April 2004. This fog patch, with a spatial scale of several hundreds kilometers and lasted about 20 h, reduced the horizontal visibility to be less than 20 m in some locations, and caused a series of traffic collisions and 12 injuries on the coastal stretch of a major highway. In this paper, almost all available observational data, including Geostationary Operational Environmental Satellite (GOES)-9 visible satellite imagery, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and the sounding data of Qingdao and Dalian, as well as the latest 4.4 version of Regional Atmospheric Modeling System (RAMS) model, were employed to investigate this sea fog case. Its evolutionary process and the environmental conditions that led to the fog formation were examined by using GOES-9 visible satellite imagery and sounding observations. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling of 4 km × 4 km was designed. The modeling was initialized and validated by FNL data. A 30-h modeling that started from 18 UTC 10 April 2004 reproduced the main characteristics of this fog event. The simulated lower horizontal visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role for the fog formation.  相似文献   
103.
Using equivalent black body temperature (TBB) data retrieved from meteorological satellite GMS-5 during 1996-2002,the correlation between the circular symmetric/asymmetric component of TBB and the intensity of tropical cyclone (TC) at various time lags from 0 to 48 h is analyzed for the Northwest Pacific (0°-50°N,120°-155°E),excluding landed and near-coast samples.It is found that the total TBB near southeast of the eyewall,the circular symmetric component,and the sum of the amplitudes of tangential wave numbers 1-10 (SA10) of the TBB between the radii of 0.8°and 1.7°are significantly and negatively correlated with the TC intensity at various time lags from 0 to 48 h.Especially,the maximum 24-h lag correlation coefficients reach -0.52,-0.58,and -0.625,respectively. A statistical prediction scheme for TC intensity is developed based on climatic persistent,synoptic,and TBB factors by stepwise regression technique.It is found that the variance contribution of the averaged TBB over the ring between 1.0°and 1.5°from the TC center ranks the fourth in the equation for 12-h TC intensity prediction,and those of the total TBB near southeast of the eyewall and the difference between maximum and minimum TBB between 1.1°and 1.5°rank the third and fifth respectively in the 24-h forecast equation.It is also shown that,with TBB factors,the following predictions are improved compared to the scheme without TBB factors:48-h prediction for severe tropical storm (STS),12-h prediction for TC with a weakening rate greater than 15 m s~(-1)/12 h,24-h intensity prediction for TC with almost no intensity change,and 48-h prediction for TC intensifying faster than 10 m s~(-1)/48 h.  相似文献   
104.
A meso-α-scale polar low was observed over the Japan Sea on 19 December 2003. It initialed around 11 UTC over the northwestern part of the Japan Sea within a synoptic-scale parent low under the influence of baroclinic environment and disappeared over the eastern edge of Japan Islands with a lifetime of about 20 h. It is of interest that this polar low had “concentric eye-walls” and “warm core” structure at its mature stage. The evolutionary process and spatial structure of this polar low were investigated by using almost all available observational data, including the Geostationary Operational Environmental Satellite (GOES)-9, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the surface observational data and the 9-station sounding data of Japan Islands. In order to study its development mechanism, a 24-h numerical simulation using the version 4.4 of the Regional Atmospheric Modeling System (RAMS) starting from 12 UTC 19 December 2003 with an 8 km × 8 km resolution was performed. It is shown that the RAMS model reproduced the main features of the polar low reasonably well. The vorticity budget analyses indicate that the stretching term is the major contributor for the vorticity increase of the polar low. The baroclinic background seems to play significant role for the initial development of this polar low. However, the effect of the diabatic heating for its later development is also significant.  相似文献   
105.
利用海陆热力差指数(ILSTD)、500 hPa位势高度场、向外长波辐射(OLR)资料及NCEP/NCAR月平均再分析数据集,分析东亚夏季风与西北太平洋地区(包括中国南海)热带气旋频数的关系,结果表明,在强夏季风年西北太平洋地区热带气旋频数偏多,而弱夏季风年同期热带气旋频数异常偏少而后期趋于正常,正常夏季风年热带气旋频数基本正常.并结合热带气旋形成的大尺度环流条件,对其动力机制作了初步探讨.  相似文献   
106.
In this paper, the main meteorological and meteorologically induced marine disasters in Shanghai are climatologically investigated on the basis of historical qualitative documentary records and quantitative data. Statistics show that disasters may be classified into six different kinds, of which three are fundamental, i.e. floods, winds, and storm surges. Emphasis is placed on the detailed analysis and discussion of floods, tropical cyclones, and Mei-yu which affect Shanghai and cause destructive calamities.Firstly, the classification of floods, their frequencies, and geographical distribution characteristics are described and the regulation of the climatic variation of floods is revealed. Secondly, the frequency, source regions, seasonal variations, tracks, and translatory speeds of tropical cyclones affecting Shanghai, and their induced strong winds, storm rainfalls, and storm surges are systematically studied. Many meaningful conclusions have been reached for providing the climatological background of Shanghai.The climatic change and its regulation of these main disasters in Shanghai have been basically clarified throughout this study.  相似文献   
107.
A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (ε g), defined as the difference between the energy production (P D) due to surface entropy flux and the energy dissipation (D S) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ε g is high, indicating sufficient energy supply for the storm to intensify. However, the ε g decreases rapidly as the storm quickly intensifies, because the D S increases more rapidly than the P D near the RMW. By the time the storm reaches its peak intensity, the D S is about 20% larger than the P D near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the P D and D S can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local P D under the eyewall is not large enough to balance the D S, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.  相似文献   
108.
基于先进的微波扫描辐射计AMSR-E/2观测的辐射值,利用-维变分算法(1D-Var)反演各类水成物(云水、雨水和云冰)的垂直廓线,并对其反演结果进行检验。以2014年8月台风"夏浪"为例,分两步对变分反演的云微物理参数进行了检验。首先,将反演的各类水成物含量补充到辐射传输模式的输入场,观测算子模拟的AMSR-2各通道亮温与实况观测相比非常接近,可以很好地模拟出台风外形、强度及螺旋结构。其次,将反演的水成物廓线与载在Cloud Sat上的云雷达CPR同时段观测的雷达反射率因子进行对比,发现反演出的云水、雨水含量大值区与毫米波云雷达观测的雷达反射率因子高值区一一对应,进一步说明1D-Var反演的水成物参数精度很高。然而,由于星载AMSR-E/2观测通道少且空间分辨率低,对尺度较小、较薄的云不敏感,同时对云层较厚的密闭云区和多层云区反演能力也有限。  相似文献   
109.
Travel activities are embodied as people’s needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access.  相似文献   
110.
云南省长期遭受旱灾打击,对农业生产和农户收益造成较大影响。农户准确地感知旱灾风险将会在防灾减灾中发挥重要作用。为了揭示旱灾风险感知作用机理,借鉴认知心理学理论分析感知过程,对其构成要素和影响因素进行区分;基于霍华德和希斯理论构建旱灾风险感知模型;运用BP神经网络模型识别感知力。结果表明:(1)旱灾风险感知过程是大脑不断感觉—感应—学习从而获得感知力的顿悟认知过程。(2)感知力由地方灾情感受力、模仿力、预判力和行为反馈力构成,受到灾情环境、经济收入和农作物种植结构等因素影响。(3)农户旱灾风险感知力处于较弱水平。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号