首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地球物理   19篇
地质学   44篇
海洋学   31篇
天文学   11篇
综合类   2篇
自然地理   12篇
  2021年   3篇
  2019年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
91.
92.
Amorphous silicon oxide films have been studied on the basis of electron diffraction (ED) analyses and infrared (IR) spectroscopy in order to elucidate the relationship between the structures. After the heat treatment of the film in air at 300 and 500°C, the ED pattern showed halo rings, and the IR spectra clearly changed. Intensity analysis of the ED pattern provided evidence for the structural change of the amorphous film. It was concluded that the spectral changes in the ranges of 9.2–10.2, 12.5–13.5 and 19.5–22.5 μm were the result of phase transitions of the microcrystallites of α-cristobalite to β-cristobalite, and α- or β-quartz. Astrophysical implications have been discussed.  相似文献   
93.
The Barents Sea is located in the northwestern corner of the Eurasian continent, where the crustal terrain was assembled in the Caledonian orogeny during Late Ordovician and Silurian times. The western Barents Sea margin developed primarily as a transform margin during the early Tertiary. In the northwestern part south of Svalbard, multichannel reflection seismic lines have poor resolution below the Permian sequence, and the early post-orogenic development is not well known here. In 1998, an ocean bottom seismometer (OBS) survey was collected southwest to southeast of the Svalbard archipelago. One profile was shot across the continental transform margin south of Svalbard, which is presented here. P-wave modeling of the OBS profile indicates a Caledonian suture in the continental basement south of Svalbard, also proposed previously based on a deep seismic reflection line coincident with the OBS profile. The suture zone is associated with a small crustal root and westward dipping mantle reflectivity, and it marks a boundary between two different crystalline basement terrains. The western terrain has low (6.2–6.45 km s−1) P-wave velocities, while the eastern has higher (6.3–6.9 km s−1) velocities. Gravity modeling agrees with this, as an increased density is needed in the eastern block. The S-wave data predict a quartz-rich lithology compatible with felsic gneiss to granite within and west of the suture zone, and an intermediate lithological composition to the east. A geological model assuming westward dipping Caledonian subduction and collision can explain the missing lower crust in the western block by subduction erosion of the lower crust, as well as the observed structuring. Due to the transform margin setting, the tectonic thinning of the continental block during opening of the Norwegian-Greenland Sea is restricted to the outer 35 km of the continental block, and the continent–ocean boundary (COB) can be located to within 5 km in our data. Distinct from the outer high commonly observed on transform margins, the upper part of the continental crust at the margin is dominated by two large, rotated down-faulted blocks with throws of 2–3 km on each fault, apparently formed during the transform margin development. Analysis of the gravity field shows that these faults probably merge to one single fault to the south of our profile, and that the downfaulting dominates the whole margin segment from Spitsbergen to Bjørnøya. South of Bjørnøya, the faulting leaves the continental margin to terminate as a graben 75 km south of the island. Adjacent to the continental margin, there is no clear oceanic layer 2 seismic signature. However, the top basement velocity of 6.55 km s−1 is significantly lower than the high (7 km s−1) velocity reported earlier from expanding spread profiles (ESPs), and we interpret the velocity structure of the oceanic crust to be a result of a development induced by the 7–8-km-thick sedimentary overburden.  相似文献   
94.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   
95.
The behavior of transition metals (Co, Ni, Cu and Zn) on precipitation of manganese oxides from seawater pumped up from a well at the site of the Marine Science Museum, Tokai University, and collected from several tanks along the water supply system to an aquarium was investigated. The distribution coefficients of cobalt and nickel between manganese oxides and seawater were different at different sampling points along the water supply system. At sampling points with high rates of manganese oxide precipitation, the distribution coefficients were about one order of magnitude smaller than those at the points with low precipitation rates, while there were no remarkable differences in the distribution coefficients of copper and zinc among the sampling points. The distribution coefficients of minor transition metals, with the exception of copper, observed at the points with low precipitation rates were comparable to those measured experimentally using manganese dioxides.  相似文献   
96.
At the Minamichita Beach Land (Mihama-cho, Aichi, Japan), seawater is pumped up from underground and is supplied to aquaria. The underground seawater containsca. 2 ppm of Fe (II), 0.1 ppm of Mn (II) and a little dissolved oxygen. Iron oxide is formed in the seawater when aerated. The oxidation rate of Fe (II) was measured to be 1.4×1014 mol–3 l 3 min–1, which is comparable to the lowest values in the literature. The slow rate of Fe (II) oxidation obtained here can be attributed to the presence of organically bound iron in the seawater. The distribution coefficient of cations between seawater and iron oxide phase was in the order of Cu>Ni>Co>Cd>Mn, which is consistent with that predicted from their hydrolysis constants. The adsorption affinity sequence of oxyanions was phosphate >vanadate> molybdate. The difference in phosphate from the prediction of the adsorption theory was attributed to the formation of ferriphosphate on the oxide surface. On the basis of these data, the limitation and usefulness in the application of the distribution coefficients to marine environments were discussed.  相似文献   
97.
Sources of systematic error in the sampling procedure by Winkler method were examined. In the laboratory experiment, the dissolution of atmospheric oxygen into oxygenfree sea water during sampling amounts to 0.022 ml/l, and the effect of dissolved oxygen in sea water remaining in oxygen bottle is 0.019 ml/l. The effect of reagents added amounts to 0.017 ml/l. In the sampling procedures aboard, the effect of dissolution became bigger, and the table is presented for the correction to the reported value of dissolved oxygen measured by the “Manual of Oceanographic Observation”. The corrected value of dissolved oxygen in the routine analysis may not be correct within 0.02 ml/l.  相似文献   
98.
99.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   
100.
Uncertainty for elemental and isotopic measurements in calcite by LA‐ICP‐MS is largely controlled by the homogeneity of the reference materials (RMs) used for calibration and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb and rare earth elements into calcite through heat‐ and pressure‐induced crystallisation from amorphous calcium carbonate that was precipitated from element‐doped reagent solution. X‐ray absorption spectra showed that U was present as U(VI) in the synthesised calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison with synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The 207Pb/206Pb ratio in the calcite showed < 1% variations, while the 238U/206Pb ratio showed 3–24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC‐1, with analytical uncertainty as low as < 3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions and is a promising alternative to natural calcite RMs for U‐Pb geochronology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号