首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   3篇
  国内免费   12篇
测绘学   1篇
大气科学   2篇
地球物理   35篇
地质学   60篇
海洋学   26篇
天文学   7篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   8篇
  2011年   14篇
  2010年   5篇
  2009年   3篇
  2008年   18篇
  2007年   1篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
101.
Uncertainty for elemental and isotopic measurements in calcite by LA‐ICP‐MS is largely controlled by the homogeneity of the reference materials (RMs) used for calibration and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb and rare earth elements into calcite through heat‐ and pressure‐induced crystallisation from amorphous calcium carbonate that was precipitated from element‐doped reagent solution. X‐ray absorption spectra showed that U was present as U(VI) in the synthesised calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison with synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The 207Pb/206Pb ratio in the calcite showed < 1% variations, while the 238U/206Pb ratio showed 3–24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC‐1, with analytical uncertainty as low as < 3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions and is a promising alternative to natural calcite RMs for U‐Pb geochronology.  相似文献   
102.
Radiocarbon calibration beyond the extent of tree-ring records depends on U-series dating of fossil corals or speleothem, both of which can provide independent calendar ages. Less direct methods rely on layer counting and comparison with other well-dated records. In spite of considerable effort to provide a reliable radiocarbon calibration curve beyond 25,000 years, the majority of the data show large atmospheric radiocarbon peaks which are inconsistent both in magnitude and timing between different determinations. The results of the most recent work [Chiu, T.-C., Fairbanks, R.G., Mortlock, R.A., Bloom, A.L., 2005. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews 24 (16–17), 1797–1808], from Araki Island fossil corals, indicate a monotonic variation from about 33 to 49 ka, with no radiocarbon peaks, but with some gaps in the data. The difference between this and previous results, from fossil corals, has been attributed to selection of better-quality samples and rigorous analytical methods. However, previous results from Huon Peninsula [Yokoyama, Y., Esat, T.M., Lambeck, K., Fifield, L.K., 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42 (3), 383–401; Cutler, K.B., Gray, S.C., Burr, G.S., Edwards, R.L., Taylor, F.W., Cabioch, G., Beck, J.W., Cheng, H., Moore, J., 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46 (3), 1127–1160] show radiocarbon peaks exclusively located within the gaps in the Araki data. The timing of the gaps are not random, but appear to be related to severe climate and sea-level variations associated with Heinrich events initiated in the North Atlantic. We propose that the Huon and Araki data sets are complementary rather than exclusive and that the absence of coral growth at Araki Island during Heinrich events presumably reflect local adverse conditions for coral growth.  相似文献   
103.
104.
Supercooled drizzle (freezing drizzle) was observed at Inuvik, N.W.T., Canada (68°22′N, 133°42′W) on December 20, 21 and 27, 1995. Meteorological conditions in which the supercooled drizzle could form under low temperatures (colder than −20°C) in the mid-winter season of the Canadian Arctic were examined from the sounding data and data measured by a passive microwave radiometer at ground level. The following results were obtained. (1) Supercooled drizzle fell to the ground with ice pellets and frozen drops on snow crystals. (2) The maximum size of supercooled drizzle particles increased as the depth of cloud layer saturated with respect to water increased. (3) Because a layer of air temperature higher than 0°C was not detected from the sounding data at Inuvik, melting of snow particles was impossible. It was concluded, therefore, that supercooled drizzle was formed by the condensation–coalescence process below freezing temperature.  相似文献   
105.
An array of five bottom-tethered moorings with 19 PARFLUX time-series sediment trap at three depths (1 and 2 km below the surface, and 0.7 km above the sea-floor) was deployed in the western Pacific sector of the Southern Ocean, along 170°W. The five stations were selected to sample settling particles in the main hydrological zones of the Southern Ocean. The sampling period spanned 425 days (November 28, 1996–January 23, 1998) and was divided into 13 or 21 synchronized time intervals. A total of 174 sequential samples were recovered and analyzed to estimate fluxes of total mass (TMF), organic carbon, carbonate, biogenic silica, and lithogenic particles. The fluxes of biogenic material were higher than anticipated, challenging the notion that the Southern Ocean is a low-productivity region. Organic carbon fluxes at 1 km depth within the Polar Frontal Zone and the Antarctic Zone were relatively uniform (1.7–2.3 g m−2 yr−1), and about twice the estimated ocean-wide average (ca. 1 g m−2 yr−1). Carbonate fluxes were also high and uniform between the Subantarctic Front and ca. 64°S (11–13 g m−2 yr−1). A large fraction of the carbonate flux in the Antarctic Zone was due to the presence of pteropod shells. Coccoliths were found only to the north of the Polar Front, and calcium carbonate became the dominant phase in the Subantarctic Zone. In contrast, carbonate particles were nearly absent near 64°S. Latitudinal variations in biogenic silica fluxes were substantial. The large opal flux (57 g m−2 yr−1) measured in the Antarctic Zone suggests that opal productivity in this region has been previously underestimated and helps to explain the high sedimentary opal accumulation often found south of the Polar Front. Unlike biogenic material, fluxes of lithogenic particles were among the lowest measured in the open-ocean (0.12–0.05 g m−2 yr−1), reflecting a very low dust input.  相似文献   
106.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   
107.
利用1-Hz GPS数据反演2011年3月日本东北大地震的时空破裂过程,通过理论波形图与观测波形图的拟合,以及ABIC准则的判定,反演得到滑移分布的稳定估计.结果表明:破裂集中在震源附近,并在震中以下30 km处达到最大位错量,约72 m,在岩手和福岛靠近海岸线处有两个较小的破裂区,断层的南半段破裂很小,同时也是余震最为密集的地方.整个破裂过程由3个破裂阶段组成,发震后断层从震源向周围缓慢破裂,在50~60 s破裂延伸至地表(海沟);60~90 s在震中下方迅速发生强烈破裂,形成了最大位错区,这一阶段主要是倾向上的双边破裂;90~120 s在断层最北西处和断层南半段发生较小破裂,整个破裂过程持续大约120 s.反演得到的地震矩为3.8×1022 Nm,相应的矩震级为MW 9.0.  相似文献   
108.
To assess differences in fish assemblage structures among microhabitats within the surf zone of an exposed sandy beach, three microhabitats (onshore current, rip current, and river adjacent sites) were sampled at Sanrimatsubara Beach, western Japan, in May, August, and November 2002 and 2003. Although several physical variables (e.g. wave height, current speed, turbidity, salinity, and sand particle size) and major prey abundances (calanoid copepods and mysids) differed among the sites, no significant differences were apparent in the numbers of fish species and individuals among the sites in any month in either year. In addition, species and individual numbers of two dominant feeding groups (zooplankton feeders, and epiphytic and benthic crustacean feeders) did not show any significant responses to among-site differences in prey abundance. Cluster and ordination analysis confirmed the similarity in fish species composition among the three sites. These results indicated that the surf zone fish assemblage structures were similar among the microhabitats in spite of there being microhabitat-related differences in abiotic and biotic environments.  相似文献   
109.
A significant carbon-14 enhancement has recently been found in tree rings for the year 994, suggesting an extremely strong and brief cosmic ray flux event. The origin of this particular cosmic ray event has not been confirmed, but one possibility is that it might be of solar origin. Contemporary historical records of low-latitude auroras can be used as supporting evidence of intense solar activity around that time. We investigate previously reported as well as new records that have been found in contemporary observations from the 990s to determine potential auroras. Records of potential red auroras in late 992 and early 993 were found around the world, i.e. in the Korean Peninsula, Saxonian cities in modern Germany, and the Island of Ireland, suggesting the occurrence of an intense geomagnetic storm driven by solar activity.  相似文献   
110.
The 137°E repeat hydrographic section of the Japan Meteorological Agency across the western North Pacific was initiated in 1967 as part of the Cooperative Study of the Kuroshio and Adjacent Regions and has been continued biannually in winter and summer. The publicly available data from the section have been widely used to reveal seasonal to decadal variations and long-term changes of currents and water masses, biogeochemical and biological properties, and marine pollutants in relation to climate variability such as the El Niño-Southern Oscillation and the Pacific Decadal Oscillation. In commemoration of the 50th anniversary in 2016, this review summarizes the history and scientific achievements of the 137°E section during 1967–2016. Through the publication of more than 100 papers over this 50-year span, with the frequency and significance of the publication increasing in time, the 137°E section has demonstrated its importance for future investigations of physical–biogeochemical–biological interactions on various spatiotemporal scales, and thereby its utility in enhancing process understanding to aid projections of the impact of future climate change on ocean resources and ecosystems over the twenty-first century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号