首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39942篇
  免费   3081篇
  国内免费   4316篇
测绘学   2999篇
大气科学   3712篇
地球物理   7459篇
地质学   17965篇
海洋学   4475篇
天文学   6368篇
综合类   956篇
自然地理   3405篇
  2023年   296篇
  2022年   807篇
  2021年   1083篇
  2020年   866篇
  2019年   1027篇
  2018年   1358篇
  2017年   1314篇
  2016年   1429篇
  2015年   1237篇
  2014年   1504篇
  2013年   2512篇
  2012年   1919篇
  2011年   2200篇
  2010年   1972篇
  2009年   2273篇
  2008年   2154篇
  2007年   2105篇
  2006年   2093篇
  2005年   1530篇
  2004年   1460篇
  2003年   1209篇
  2002年   1187篇
  2001年   1074篇
  2000年   1035篇
  1999年   668篇
  1998年   560篇
  1997年   625篇
  1996年   483篇
  1995年   484篇
  1994年   480篇
  1993年   386篇
  1992年   405篇
  1991年   364篇
  1990年   374篇
  1989年   333篇
  1988年   337篇
  1987年   369篇
  1986年   323篇
  1985年   421篇
  1984年   418篇
  1983年   445篇
  1982年   418篇
  1981年   365篇
  1980年   399篇
  1979年   324篇
  1978年   302篇
  1977年   296篇
  1976年   263篇
  1975年   263篇
  1974年   267篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
This paper presents results of high-resolution deep seismic reflection profiling of the Proterozoic Vindhyan basin of the Rajasthan area along the Chandli-Bundi-Kota-Kunjer profile. Seismic images have been used to estimate the thickness of Vindhyan strata as well as to understand the tectonic framework of the basin. The results are constrained by gravity, magnetic and magnetotelluric data. The study reveals gentle SE-dipping reflection bands representing the Vindhyan strata. The seismic sections depict gradual thickening of the Vindhyan succession towards southeast from Bundi. The velocities of the upper and lower Vindhyans are identified as 4.6-4.8 km/s and 5.1-5.3 km/s. The NW limit of the Vindhyan basin is demarcated by the Great Boundary Fault (GBF) that manifests as a 30 km wide NW dipping thrust fault extending to a depth of 30 km.  相似文献   
992.
993.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
994.
995.
996.
The physical properties of the hydrous phyllosilicate lizardite have been investigated by atomistic simulation using the GULP code based on transferable semi-empirical interatomic potentials. Lizardite behavior was first investigated during structure relaxation at room temperature. The Helmholtz free energy is minimum for an equilibrium structure that is in agreement with experiment. The bulk, shear, and Young modulii for lizardite were calculated along with the Poisson ratio. From the shear and bulk modulii, we also calculated translational and longitudinal acoustic wave velocities that are important quantities for tectonophysics models. As expected, lizardite is stiffer in the a direction parallel to the layers than in the c perpendicular direction; the variation of the unit cell parameters with pressure is in good agreement with experiment. The cohesive energy between two successive layers along c direction was calculated at 0.33 eV (i.e., 0.11 eV per OH bond) in good agreement with recent ab initio calculations. Upon pressure and temperature variations, we evidenced that structural changes are mainly pressure induced; pressure being accommodated by a decrease of the c parameter up to 10 GPa. We also found that the change of slope in the derivative of the c cell parameter with respect to pressure occurring around 2 GPa originates from the bending of the interlayer hydroxyl groups with respect to the layer normal direction.  相似文献   
997.
In previous communications based on the study of sulfur and strontium, we showed that Lower Cambrian rocks of the Irkutsk Amphitheater underwent a significant epigenetic transformation. All postsedimentary alterations of rocks are related to the influence of water solutions that provoke the direct (physical) dissolution of material and its chemical transformation. In particular, an appreciable portion of anhydrites disappeared from the section due to reduction. Probably, these processes took place several times in the past and they are continuing at present. A similar conclusion was deduced from the strontium isotopic composition of carbonate rocks. Their strontium isotopic composition is usually shifted relative to the primary composition, although the prevalence of sulfate and carbonate rocks in the section promotes the stability of strontium isotopic composition with respect to secondary alterations. The carbon isotope system is even more stable due to the abundance of carbonate rocks in the section. This circumstance is probably responsible for the incapacity of isotope data to serve as obvious evidence of the epigenetic transformation of carbonates. The major elements of the evolution of carbon isotope signature could be retained since the sedimentation stage.  相似文献   
998.
999.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
1000.
New data on Sr-and C-isotopic systematics of carbonate rocks from the Upper Riphean stratotype (Karatau Group of the southern Urals) are obtained for several southwestern sections of the Bashkirian meganticlinorium, which have not been studied before. The results obtained supplement the Sr-and C-isotopic information for the group upper horizons thus detailing chemostratigraphic characterization of the entire succession. Limestone and dolostone samples used to analyze the Sr isotope composition satisfy strict geochemical criteria of the isotopic system retentivity and have been subjected to preliminary treatment in ammonium acetate to remove secondary carbonate phases. Data on 255 samples of carbonate rocks (171 studied for the first time) show that δ13C value varies in the Karatau Group succession from ?2.8 to +5.9 ‰ V-PDB with several in-phase excursions from the general trend in all the sections studied in the area 90 × 130 km. The δ13C variation trend demarcates several levels in the carbonate succession of the Karatau Group suitable for objectives of regional stratigraphy and for C-isotope chemostratigraphic subdivision of the Upper Riphean. The results of Sr isotopic analysis of 121 samples (51 unstudied before) from the Karatau Group imply that rocks in its lower part (the Katav Formation and basal horizon of the Inzer Formation) experienced considerable secondary alterations, while limestones and dolostones of the overlying interval of the group are frequently unaltered. In the “best” samples satisfying geochemical criteria of the isotopic system retentivity, the 87Sr/86Sr initial ratio increases from 0.70521–0.70532 in the lower Inzer deposits to 0.70611 in the upper Min’yar carbonates, decreasing to <0.70600 near the top of the latter. Above the regional hiatus separating the Min’yar and Uk formation, this ratio grows from 0.70533 to 0.70605–0.70609 in the limestone succession of the last formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号