首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13833篇
  免费   3143篇
  国内免费   2820篇
测绘学   840篇
大气科学   2487篇
地球物理   4524篇
地质学   6891篇
海洋学   1643篇
天文学   993篇
综合类   947篇
自然地理   1471篇
  2024年   38篇
  2023年   157篇
  2022年   455篇
  2021年   557篇
  2020年   488篇
  2019年   754篇
  2018年   765篇
  2017年   793篇
  2016年   955篇
  2015年   911篇
  2014年   988篇
  2013年   1113篇
  2012年   873篇
  2011年   870篇
  2010年   813篇
  2009年   780篇
  2008年   720篇
  2007年   607篇
  2006年   535篇
  2005年   525篇
  2004年   421篇
  2003年   513篇
  2002年   576篇
  2001年   557篇
  2000年   491篇
  1999年   530篇
  1998年   372篇
  1997年   395篇
  1996年   369篇
  1995年   301篇
  1994年   258篇
  1993年   219篇
  1992年   178篇
  1991年   149篇
  1990年   126篇
  1989年   132篇
  1988年   113篇
  1987年   65篇
  1986年   70篇
  1985年   46篇
  1984年   40篇
  1983年   26篇
  1982年   21篇
  1981年   27篇
  1980年   20篇
  1979年   18篇
  1978年   17篇
  1976年   8篇
  1973年   11篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
61.
The Late Permian (Wuchiapingian) Alcotas Formation in the SE Iberian Ranges consists of one red alluvial succession where abundant soil profiles developed. Detailed petrographical and sedimentological studies in seven sections of the Alcotas Formation allow six different types of palaeosols, with distinctive characteristics and different palaeogeographical distribution, to be distinguished throughout the South‐eastern Iberian Basin. These characteristics are, in turn, related to topographic, climatic and tectonic controls. The vertical distribution of the palaeosols is used to differentiate the formation in three parts from bottom to top showing both drastic and gradual vertical upwards palaeoenvironmental changes in the sections. Reconstruction of palaeoenvironmental conditions based on palaeosols provides evidence for understanding the events that occurred during the Late Permian, some few millions of years before the well‐known Permian‐Triassic global crisis.  相似文献   
62.
Fossil stromatolites may reveal information about their hydrochemical palaeoenvironment, provided that assignment to a specific microbial community and a corresponding biogeochemical mechanism of formation can be made. Tithonian stromatolites of the Münder Formation at Thüste, north Germany, have traditionally been considered as formed by intertidal cyanobacterial communities. However, thin sections of the stromatolites show elongated angular traces of former gypsum crystals in a dense arrangement, but no algal or cyanobacterial filament traces. Moreover, high Fe2+ and Mn2+ contents, oxygen‐isotope and sulphur‐isotope ratios of carbonate‐bound sulphates, and sulphurized hydrocarbon biomarkers of the stromatolitic carbonate indicate that CaCO3 precipitation occurred near the oxic–anoxic interface as a result of intensive bacterial sulphur cycling rather than photosynthetic activity. Furthermore, anaerobic oxidation of methane by Archaea may have driven CaCO3 precipitation in deeper parts of the biofilm community, as reflected by high concentrations of squalane with a strongly negative δ13C in conjunction with evaporite pseudomorphs showing extremely low δ13CCarb ratios. Consequently, the Thüste stromatolites are now interpreted as having initially formed by gypsum impregnation of biofilms. Subsequently, early Mg‐calcitic calcitization within the biofilms occurred because of combined bacterial iron, manganese and sulphate reduction, with an increasing contribution of anaerobic oxidation of methane with depth. This model plausibly explains the prominent preservation of signals derived from oxygen‐independent metabolic pathways, whereas virtually no geochemical record exists for an aerobic community that may, nevertheless, have prevailed at the stromatolite surface. Photic‐zone stromatolites with a prominent signal of anaerobic oxidation of methane may be common in, and indicative of, oxygen‐depleted sulphate‐bearing environments with high rates of methane production, conditions that possibly were fulfilled at the Archaean to Proterozoic transition.  相似文献   
63.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
64.
Gneissic rocks in the Chinese Altai Mountains have been interpreted as either Paleozoic metasedimentary rocks or Precambrian basement. This study reports geochemical and geochronological data for banded paragneisses and associated gneissic granitoids collected along a NE–SW traverse in the northwestern Chinese Altai. Petrological and geochemical data suggest that the protoliths of the banded gneisses were possibly immature sediments with significant volcanic input and that the gneissic granitoids were derived from I-type granites formed in a subduction environment. Three types of morphological features can be recognized in zircons from the banded gneisses and are interpreted to correlate with different sources. Zircons from five samples of banded paragneiss cluster predominantly between 466 and 528 Ma, some give Neoproterozoic ages, and a few yield discordant Paleoproterozoic to Archean ages. Zircon Hf isotopic compositions indicate that both juvenile/mantle and crust materials were involved in the generation of the source rocks from which these zircons were derived. In contrast, zircons occur ubiquitously as elongated euhedral prismatic crystals in the four samples of the gneissic granitoids, and define single populations for each sample with mean ages between 380 and 453 Ma. The general absence of Precambrian inheritance and positive zircon ?Hf values for these granitoids suggest insignificant crustal contribution to the generation of the precursor magmas. Our data can be interpreted in terms of a progressive accretionary history in early to middle Palaeozoic times, and the Chinese Altai may possibly represent a magmatic arc built on a continental margin dominated by Neoproterozoic rocks.  相似文献   
65.
66.
The Monte Carlo method is used to generate parent stochastic discrete fracture network, from which a series of fractured rock samples of different sizes and orientations are extracted. The fracture network combined with a regular grid forms composite element mesh of the fractured rock sample, in which each composite element is composed of sub‐elements incised by fracture segments. The composite element method (CEM) for the seepage is implemented to obtain the nodal hydraulic potential as well as the seepage flow rates through the fractured rock samples. The application of CEM enables a large quantity of stochastic tests for the fractured rock samples because the pre‐process is facilitated greatly. By changing the sizes and orientations of the samples, the analysis of the seepage characteristics is realized to evaluate the variation of the permeability components, the existence of the permeability tensor and the representative element volume. The feasibility and effectiveness are illustrated in a numerical example. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
67.
Biaxial test simulations using a packing of polygonal particles   总被引:1,自引:0,他引:1  
The mechanical response of cohesionless granular materials under monotonic loading is studied by performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense and loose media show that samples achieve the same void ratio at large strains independent of their initial density state. This limit state resembles the so‐called critical state of soil mechanics, except for some stress fluctuations, which remain for large deformations. These fluctuations are studied at the micro‐mechanical level, by following the evolution of the co‐ordination number, force chains and the fraction of the sliding contacts of the sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
68.
邓飞  贾东  罗良  李海滨  李一泉  武龙 《地质论评》2008,54(4):561-573
为了研究龙门山褶皱冲断带两侧的松潘甘孜和川西前陆盆地在大地构造和沉积学方面存在的联系,笔者等分别在松潘甘孜东缘马尔康—理县地区和川西前陆盆地都江堰地区进行了采样和碎屑锆石的LAICPMS UPb定年工作。269颗锆石的定年结果显示,中—晚三叠世拉丁期—诺利期松潘甘孜复理石盆地东缘沉积地层中的碎屑锆石年龄主要集中在250~280 Ma、1800~1900 Ma和2400~2500 Ma、200~245 Ma、400~450 Ma,对应的物源主要为东昆仑岛弧、华北陆块基底、义敦岛弧以及北秦岭。与之相比,川西前陆盆地诺利期—瑞替期的须家河组地层中的碎屑锆石年龄大致主要集中在1800~1900 Ma和2400~2500 Ma、720~850 Ma、950~1200 Ma、400~450 Ma。该统计结果总体上继承了松潘甘孜数据体的特征,揭示出须家河组物源来自西部——松潘甘孜褶皱带的再旋回沉积和龙门山前陆冲断带。  相似文献   
69.
谢锦龙  黄冲  向峰云 《地质科学》2008,43(1):133-153
南海西部海域构造复杂,主要发育有北东—北东东向、北西向和近南北向3组深大断裂。其中,北西向断裂与板块汇聚、碰撞有关,多具走滑性质;北东—北东东向断裂具有与中国东部裂谷盆地相似的发育特点,呈张扭性质;近南北向断裂可能是南海在扩张活动期间于洋、陆壳过渡部位形成的走滑调节断裂,是洋盆扩张的西部边界。新生代里,南海经历了4次成盆事件与3期扩张活动,盆地经历了古新世—中始新世陆缘断陷、渐新世—早中新世扩展与中中新世以来的热沉降3个演化阶段。陆缘断陷阶段的充填系列主要是北东—北东东向与北西向的河流—冲积扇、湖泊沼泽等陆相沉积及火山岩等;盆地扩展阶段表现为中-小型断陷、断-坳陷逐渐复合与联合为大-中型坳陷,古地理格局逐渐由河流与湖沼陆相环境演变为滨海至浅海相的沉积环境;热沉降阶段的成盆活动逐渐减弱以至停止,地层表现超覆,盆地出现联合迹象。结合以往勘探与油气资源调查成果分析,认为南海西部海域陆架陆坡区发育的大-中型沉积盆地石油地质条件良好,蕴藏着丰富的油气资源,勘探潜力巨大。  相似文献   
70.
We test the hypothesis that flexural isostatic compensation of the mass removed by enhanced Quaternary erosion is responsible for uplift of the Western European Alps and their forelands. We use two well‐preserved and well‐dated (1.8 Ma) abandonment surfaces of foreland basin remnants in SE France (the Chambaran and Valensole plateaux) as passive benchmarks for tilting of the foreland. Estimating their initial slope from morphometric scaling relationships, we determine bulk post‐depositional tilting of 0.5–0.8% for these surfaces. The calculated isostatic response of the Alpine lithosphere to erosional unloading, using the method recently proposed by Champagnac et al. [Geology 35 (2007) 195–198] , yields a predicted tilting of 0.3–0.4% in the considered areas, explaining approximately half of the determined post‐depositional tilting. Such long‐term deformation being insensitive to cyclic loading/unloading because of glaciations, we suspect the other half to be related to as yet undetermined long‐wavelength and long‐lived tectonic process(es).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号