首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   1篇
地球物理   3篇
地质学   26篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有29条查询结果,搜索用时 640 毫秒
21.
Based on comprehensive studies of fluid inclusions in quartz formed at different stages of hydrothermal process, we consider the physicochemical conditions of formation of epithermal ores (K1) in the Balei ore field. The limiting parameters of hydrothermal process have been established: 353–131 °C, 150–30 bars, and salt concentrations of 7.6–0.5 wt.%-NaCl equiv. A specific feature of the ore-forming process at the Balei deposits is a rapid drop in temperature and pressure, which is typical of open hydrothermal systems. The temperature increase at the beginning of each stage evidences pulse-like ore formation. The productive stage coincides with the initiation of a drastic decrease in temperature (<225 °C) and salt concentration in the solution. The deposits resulted from the functioning of the common Balei ore-magmatic system at shallow depths with a high permeability of the host rocks. High-K calc-alkalic magmas might have been sources of gold mineralization. The ore formation zone is localized above intrusive bodies near their roof. It is not ruled out that the Balei gold was partly borrowed from the products of the early cycles (J2-3) of gold mineralization and from the host rocks.  相似文献   
22.
23.
The mineral composition of the Talatui gold deposit has been studied with modern methods. Previously unknown minerals (ilmenite, siegenite, glaucodot, wittichenite, matildite, hessite, pilsenite, zircon, tremolite, cummingtonite, hercynite, and goethite) have been identified in the ore. A high Re content has been detected in molybdenite. The spatiotemporal separation of Au and Ag is caused by different mineral species of these elements and their diachronous precipitation during the ore-forming process. Gold crystallized along with early mineral assemblages, beginning from virtually pure gold (the fineness is 996). Silver precipitated largely at the end of the process as hessite (Ag2Te) and matildite (AgBiS2). The temperature of ore deposition varied from 610 to 145°C, the pressure was 3370–110 bar, and the salt concentration ranged from 56.3 to 0.4 wt % NaCl equiv. The heterogeneous state (boiling) of fluid at the early stages has been documented. The chemical and isotopic compositions of the fluid testify to its magmatic nature and the participation of meteoric water at late stages in the ore-forming process. Thermodynamic modeling reproduces the main specific features of ore formation, including separation of Au and Ag. A physicochemical model of the gold mineralization in the Darasun ore district has been proposed. On the basis of several attributes, the Talatui deposit has been referred to the prophyry gold-copper economic type.  相似文献   
24.
It is proposed that there are three types of gold deposits in Eastern and Central Transbaikalia (Trans-Baikal province), namely: (i) high-sulphide intrusion-related deposits with some signs of porphyry deposits, (ii) low-sulphide intrusion-related deposits, and (iii) low-sulphide epithermal Au–Ag deposits. Most of the gold deposits belong to the first two types, and their ages are Middle–Late Jurassic. Deposits of the third type are not numerous, and their age is Early Cretaceous.The majority of the gold mineralization is spatially related to the two branches of the Mongolia–Okhotsk suture, along which Siberia collided, at the Early/Middle Jurassic boundary, with the Mongolia–North China continent and the Onon island-arc terrane located between the two continents. Collision-related thrusting, folding and magmatism lasted until the latest Jurassic, when they gave way to post-collisional rifting that continued until the end of Early Cretaceous.According to their age, relation to magmatism and tectonic framework, the intrusion-related deposits (high- and low-sulphide) were formed in a regional collisional setting. Extensional environments at that time existed only in local areas in the roofs of great magmatic chambers. Low-sulphide epithermal deposits were formed during Early Cretaceous post-collisional rifting.  相似文献   
25.
The quantitative sea-level curve in the eastern part of the East European Platform during the Early Cretaceous first compiled for this region is based on the results of analysis of the corresponding deposits and the bathymetric distribution of benthic foraminifers in their sections. This quantitative curve is correlated with the sea-level curve constructed for central areas of the East European Platform [9]. According to [9], the basin in the central part of the platform was as deep as 110 m, while in its eastern areas the depth amounted to 350 m. It is revealed that tectono-eustatic cycles defined previously in the central part of the platform and cycles (megasequences) in its eastern areas are asynchronous and are characterized by different orders. Such asynchrony is determined by the different tectonic trends in these regions during the Early Cretaceous.  相似文献   
26.
An event-based depositional model for the Paleocene—Eocene sandy–clayey–siliceous deposits of the Russian Platform was proposed. The model was based on pulsational input of pyroclastic material and intrusion of sandy injectites. These processes should be taken into account to identify the stratigraphic position of the Paleocene–Eocene lithostratigraphic units in the eastern, southeastern, and southern parts of the Russian Platform.  相似文献   
27.
Arabian Journal of Geosciences - Surface albedo is a key parameter in earth energy budget and global climate change studies. In this aspect, variation in vegetation covers is one of the most...  相似文献   
28.

The distribution of substitutional Al, Ti, and Ge impurities in quartz samples from the Darasun, Teremkinskoe, and Talatui gold deposits, located in the Darasun ore field, were studied by electron paramagnetic resonance. The relationship between the isomorphous substitution and dynamic recrystallization of quartz was studied by optical and scanning electron microscopy. It was found that analysis of the plots of interdependence between the concentrations of various substitutional impurities in quartz (isogens) can detect development trends of isomorphous substitution. Two isomorphous substitution stages were recognized, one associated with quartz crystallization, and the other, with its subsequent dynamic recrystallization. The first stage is characterized by incorporation of Al impurity into the quartz crystal lattice, and the second, by incorporation Ti impurity. A Ge impurity is a catalyst for isomorphous substitution, and its concentrations vary widely. It is noted that the second stage plays a decisive role, because it accounts for the incorporation of the larger part of substitutional impurities. This process is facilitated by the dynamic recrystallization of quartz. Four genetic quartz groups, described by individual isogens, have been recognized in the Darasun ore field. Two of them correspond to quartz crystallized directly from a magmatogenic fluid or redeposited with the melt’s participation, and the other two groups, to quartz crystallized from an altered fluid. It was found that substitutional Al concentrations are retained in quartz after redeposition, whereas substitutional Ti concentrations decrease dramatically Mineral formation processes at each gold deposit are reviewed. Two types of temperature zoning, normal and reverse, have been recognized at the Darasun deposit. Each is characterized by an individual genetic quartz group and the degree of closedness of the mineral formation system. The genetically similar magmatogenic quartz samples found at the Darasun and Talatui deposits indicate the uniformity of the mineralization process in the Darasun ore field. The established trends of isomorphous substitution in quartz are useful in studies of the ore formation histories of gold and other ore deposits.

  相似文献   
29.
This article presents the new mineralogical, fluid inclusion, and isotopic data for ores of the Novoshirokinsky base metal–gold deposit. Mineralogical sequence is supplemented and specified. The mineral assemblages containing native gold are studied. Morphology, grain size and chemical composition of native gold are described. Major parameters and composition of mineralizing fluids of the main ore stages at the deposit are estimated: main base metal (mid-temperature conditions, fluid salinity 3.1–13.1 wt % equiv NaCl) and carbonate–base metal (low-temperature conditions, fluid salinity 1.0–12.9 wt % equiv. NaCl). Sulfur isotopic composition of sulfides from commercial mineral assemblages has been studied. The δ34S value (+10.5 ± 1‰) of mineralizing fluid has been calculated. The Novoshirokinsky deposit is similar to epithermal deposits and is spatially related to the Late Jurassic porphyry system. Evidence is provided on carbonate rocks of basement involved in the ore-forming process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号