首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2866篇
  免费   115篇
  国内免费   17篇
测绘学   106篇
大气科学   337篇
地球物理   598篇
地质学   862篇
海洋学   322篇
天文学   545篇
综合类   4篇
自然地理   224篇
  2023年   9篇
  2022年   10篇
  2021年   33篇
  2020年   43篇
  2019年   46篇
  2018年   82篇
  2017年   61篇
  2016年   113篇
  2015年   64篇
  2014年   87篇
  2013年   140篇
  2012年   123篇
  2011年   158篇
  2010年   132篇
  2009年   190篇
  2008年   175篇
  2007年   155篇
  2006年   132篇
  2005年   109篇
  2004年   117篇
  2003年   104篇
  2002年   97篇
  2001年   76篇
  2000年   83篇
  1999年   68篇
  1998年   84篇
  1997年   45篇
  1996年   44篇
  1995年   32篇
  1994年   23篇
  1993年   32篇
  1992年   24篇
  1991年   31篇
  1990年   13篇
  1989年   16篇
  1987年   14篇
  1986年   11篇
  1985年   18篇
  1984年   26篇
  1983年   20篇
  1982年   12篇
  1981年   6篇
  1980年   9篇
  1979年   8篇
  1978年   9篇
  1977年   10篇
  1976年   14篇
  1975年   13篇
  1973年   8篇
  1971年   7篇
排序方式: 共有2998条查询结果,搜索用时 15 毫秒
991.
The representative concentration pathways: an overview   总被引:20,自引:4,他引:16  
This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5?×?0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.  相似文献   
992.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   
993.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   
994.
A special issue on the RCPs   总被引:2,自引:1,他引:1  
  相似文献   
995.
The Royal Netherlands Meteorological Institute (KNMI) has published the KNMI’06 climate scenarios in 2006. These scenarios give the possible states of the climate in The Netherlands for the next century. Projections of changes in precipitation were made for a time scale of 1 day. The urban drainage sector is, however, more interested in projections on shorter time scales. Specifically, time scales of 1 h or less. The aim of this research is to provide projections of precipitation at these shorter time scales based on the available daily scenarios. This involves an analysis of climate variables and their relations to precipitation at different time scales. On the basis of this analysis, one can determine a numeric factor to translate daily projections into shorter time scale projections.  相似文献   
996.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   
997.
The role of a reduction in the Atlantic meridional overturning and that of a persistently negative North Atlantic Oscillation in explaining the coldness of the European Little Ice Age (LIA) has been assessed in two sets of numerical experiments. These experiments are performed using an intermediate complexity climate model and a full complexity GCM. The reduction in the Meridional Overturning Circulation (MOC) of ca. 25% is triggered by a conventional fresh-water hosing set-up. A persistently negative NAO winter circulation, at NAO-index value ?0.5, is imposed using recently developed data-assimilation techniques applicable on paleoclimatic timescales. The hosing experiments lead to a reduction in oceanic meridional heat transport and cooler sea-surface temperatures. Next to a direct cooling effect on European climate, the change in ocean surface temperatures feedback on the atmospheric circulation modifying European climate significantly. The data-assimilation experiments showed a reduction of winter temperatures over parts of Europe, but there is little persistence into the summer season. The output of all model experiments are compared to reconstructions of winter and summer temperature based on the available temperature data for the LIA period. This demonstrates that the hypothesis of a persistently negative NAO as an explanation for the European LIA does not hold. The hosing experiments do not clearly support the hypothesis that a reduction in the MOC is the primary driver of LIA climate change. However, a reduction in the Atlantic overturning might have been a cause of the European LIA climate, depending on whether there is a strong enough feedback on the atmospheric circulation.  相似文献   
998.
Autumn 2006 was extraordinarily mild in many parts of Europe. Near-surface temperatures were more than three standard deviations above the 1961?C1990 climatology. Even accounting for global warming, this event was far outside the probability density function of previous observations or climate model simulations. To investigate the mechanisms behind this event, the energy-budget for Autumn 2006 in Europe is estimated. Atmospheric energy-transport convergence over Europe is calculated and compared with the net energy flux at the top of the atmosphere as well as at the earth??s surface. The central North-Atlantic Ocean constituted the major source of energy. Here, the release of both sensible and latent heat was anomalously high. Atmospheric circulation played a crucial role by transporting the excess energy into Europe. Of this energy excess, dry-static energy was larger than the latent part, partly due to an additional contribution derived from a conversion of latent energy to sensible heat, which occurred upstream of the study area in the eastern Atlantic. In Europe, surface turbulent-energy fluxes into the atmosphere respond to atmospheric energy-transport convergence and are accordingly suppressed due to the anomalously high temperature and humidity content of the overlying air. The net outflow of radiational energy to space is anomalously high but not sufficient to offset the large positive anomaly of energy found over Europe. Even though the relative humidity was near its normal values in Europe, the specific humidity was considerably higher than usual. The high water-vapour content induced a local radiative positive feedback, increasing the opacity of the atmosphere to long-wave radiation. This appears to have significantly contributed to the extreme event. Atmospheric circulation played a crucial role in sustaining this feedback loop.  相似文献   
999.
The goal of this study was to test hollow‐fiber ultrafiltration as a method for concentrating in situ bacteria and viruses in groundwater samples. Water samples from nine wells tapping a shallow sandy aquifer in a densely populated village in Bangladesh were reduced in volume approximately 400‐fold using ultrafiltration. Culture‐based assays for total coliforms and Escherichia coli, as well as molecular‐based assays for E. coli, Bacteroides, and adenovirus, were used as microbial markers before and after ultrafiltration to evaluate performance. Ultrafiltration increased the concentration of the microbial markers in 99% of cases. However, concentration factors (CF = post‐filtration concentration/pre‐filtration concentration) for each marker calculated from geometric means ranged from 52 to 1018 compared to the expected value of 400. The efficiency was difficult to quantify because concentrations of some of the markers, especially E. coli and total coliforms, in the well water (WW) collected before ultrafiltration varied by several orders of magnitude during the period of sampling. The potential influence of colloidal iron oxide precipitates in the groundwater was tested by adding EDTA to the pre‐filtration water in half of the samples to prevent the formation of precipitates. The use of EDTA had no significant effect on the measurement of culturable or molecular markers across the 0.5 to 10 mg/L range of dissolved Fe2+ concentrations observed in the groundwater, indicating that colloidal iron did not hinder or enhance recovery or detection of the microbial markers. Ultrafiltration appears to be effective for concentrating microorganisms in environmental water samples, but additional research is needed to quantify losses during filtration.  相似文献   
1000.
Groundwater Recharge at Five Representative Sites in the Hebei Plain,China   总被引:4,自引:0,他引:4  
Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one‐dimensional unsaturated flow model (Hydrus‐1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine‐textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time‐lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time‐lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号