首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
海洋学   4篇
综合类   1篇
自然地理   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004–2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.  相似文献   
2.
Measurements of two small streams in northeastern Vermont, collected in 1966 and 2004–2005, document considerable change in channel width following a period of passive reforestation. Channel widths of several tributaries to Sleepers River in Danville, VT, USA, were previously measured in 1966 when the area had a diverse patchwork of forested and nonforested riparian vegetation. Nearly 40 years later, we remeasured bed widths and surveyed large woody debris (LWD) in two of these tributaries, along 500 m of upper Pope Brook and along nearly the entire length (3 km) of an unnamed tributary (W12). Following the longitudinal survey, we collected detailed channel and riparian information for nine reaches along the same two streams. Four reaches had reforested since 1966; two reaches remained nonforested. The other three reaches have been forested since at least the 1940s. Results show that reforested reaches were significantly wider than as measured in 1966, and they are more incised than all other forested and nonforested reaches. Visual observations, cross-sectional surveys, and LWD characteristics indicate that reforested reaches continue to change in response to riparian reforestation. The three reaches with the oldest forest were widest for a given drainage area, and the nonforested reaches were substantially narrower. Our observations culminated in a conceptual model that describes a multiphase process of incision, widening, and recovery following riparian reforestation of nonforested areas. Results from this case study may help inform stream restoration efforts by providing insight into potentially unanticipated changes in channel size associated with the replanting of forested riparian buffers adjacent to small streams.  相似文献   
3.
Surface transects and vertical profiles of macronutrients, dissolved iron (D-Fe), and dissolved manganese (D-Mn) were investigated during August 2003 in the southeastern Bering Sea. We observed iron-limited, HNLC surface waters in the deep basin of the Bering Sea (15-20 μmol/kg nitrate, ∼0.07 nmol/kg D-Fe, and ?1.0 nmol/kg D-Mn); nitrate-limited, iron-replete surface waters over the shelf (<0.1 μmol/kg nitrate, 0.5-4 nmol/kg D-Fe, and 2-33 nmol/kg D-Mn); and high biomass at the shelf break (“Green Belt”), where diatoms appeared to have been stressed by low D-Fe concentrations (<0.3 nmol/kg). Sources of nitrate and iron to the Green Belt were investigated. A mixture of Aleutian North Slope Current water (with elevated, but non-sufficient iron concentrations relative to its high nitrate concentrations) and surface waters from the vicinity of the Bering Canyon (with lower nitrate concentrations, but similar dissolved iron concentrations) was carried along the shelf break by the Bering Slope Current. This water mixture provided macro- and micronutrients at the southern end of the shelf break. The oceanic domain supplied additional macronutrients to Green Belt waters, while the bottom layer of the outer shelf domain supplied additional macro- and micronutrients through enhanced vertical mixing at the shelf break. Surface waters near the Pribilof Islands, where the highest surface D-Fe concentrations were observed (∼5-6 nmol/kg), represent a potential source of additional iron to Green Belt waters. During summer, the subsurface water of the middle shelf domain is a potential source of nitrate to the nitrate depleted waters of the shelf. In this subsurface cool pool, we observed evidence of substantial denitrification with lower than expected nitrate concentrations.  相似文献   
4.
A simple method for spiking formulated feed with domoic acid (DA) was developed in this study. DA feed was prepared by mixing 0.15 mL 100 μg mL-1 DA with 0.1 g formulated feed, and drying the mixture at room temperature for 2 h. The prepared DA feed contained 0.19 pg DA per particle. Of the added DA, 46.72% was retained in the feed. Relatively high DA retention (about 50%) was recorded after DA feed was soaked in water for 2h. Exposure to DA feed for 7d did not cause the increase of tissue DA level of adult king scallop (Pecten maximus) significantly in 60 d. The increase of their gonad index after DA exposure was not significantly different from the control. No significant change in DA level was found in spermary, ovary or fertilized eggs after DA exposure. These results indicated that DA excretion may be more efficient than DA accumulation under the current experimental conditions, and the mechanism of domoic acid incorporation in P. maximus may involve intracellular biotransformation.  相似文献   
5.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   
6.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
7.
Mesoscale anticyclonic eddies in the Gulf of Alaska are an important mechanism for cross-shelf exchange of high iron, low nitrate coastal waters and low iron, high nitrate offshore waters. A Kenai eddy was sampled in September 2007, 8 months after formation. The subsurface eddy core layer contained reactive iron concentrations more than eight times greater than waters at the same depths outside the eddy. The subsurface core of the Kenai eddy (25.4≤σθ≤25.8) is suggested to be seasonally important as these waters can be brought to the surface with storm events and deep winter mixing. The deeper core layer (25.8≤σθ≤27.0) is suggested to be a source of iron to HNLC waters on a longer timescale, due to isopycnal mixing and eventual eddy relaxation. The subsurface and deeper core layers are important reservoirs of iron that can promote and sustain primary productivity over the lifetime of the Kenai eddy. In addition, dissolved and leachable particulate manganese are shown to be excellent tracers of eddy surface and subsurface waters, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号