首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   14篇
  国内免费   28篇
大气科学   8篇
地球物理   1篇
地质学   2篇
海洋学   61篇
综合类   10篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.
2.
青岛冷水团的消亡机理研究   总被引:1,自引:0,他引:1  
本文基于多年月平均水温资料,分析了青岛冷水团的长消过程,并利用气候态月平均大气数据和数值模拟结果,探讨了青岛冷水团的消亡机理。结果表明,青岛冷水团3月出现,4月成型,5月最盛,6月减弱,7月消失;南黄海6-7月间偏南风的增强和温跃层以下反气旋涡的减弱是青岛冷水团消亡的动力机制,而海面净热通量的下传和水平热量的输入则是青岛冷水团消亡的热力机制。  相似文献   
3.
基于1950~2011年间的月平均温、盐度资料,以28℃等温线作为西太平洋暖池的定义标准,并取ΔT=-0.4℃,分别计算了暖池区(20°N~15°S,120°E~140°W)各格点混合层、障碍层和深层的平均盐度,构成了暖池热盐结构的盐度场.据此,运用EOF分解法分析了暖池热盐结构盐度距平场主要模态的变化特征及其与ENSO间的关系,并探讨了主要模态的年际变异机理.结果表明,暖池热盐结构盐度场第一模态揭示了盐度场变异的关键区位于暖池中部;该模态具有2~4a的年际变化和准10a的年代际变化,并在1977年前后经历了一次气候跃变(此外,深层盐度场第一模态还在1999年前后发生了一次气候跃变),且在跃变前后与不同类型的ENSO事件有较密切的联系.暖池中部混合层和障碍层盐度的变化比较一致,即在跃变前盐度为偏高期,而在跃变后则变为偏低期.暖池中部深层盐度在1977年以前和1999年之后皆处于偏高期,而在1978~1999年间则处于偏低期.而且,从混合层至深层,盐度的变化幅度逐渐变小.进一步分析表明,暖池中部混合层和障碍层盐度的年际变化主要是由纬向风、南赤道流(SEC)和降水共同引起的,即当东风增强(减弱)时,强(弱)SEC将携带更多(少)的高盐水进入混合层或潜沉至障碍层,同时局地降水的减少(增多),也使得混合层和障碍层的盐度增加(减少);深层盐度的年际变化主要是由SEC和赤道潜流(EUC)导致的,即当SEC增强(减弱)时,将有更多(少)的高盐水进入暖池,而当EUC增强(减弱)时则有更多(少)的低盐水流出暖池,从而使得暖池的深层盐度升高(降低).  相似文献   
4.
舟山渔场及其邻近海域水团的季节特征   总被引:5,自引:0,他引:5  
根据2001年夏季和2002年冬季两次现场调查所收集的CTD和营养盐资料,利用模糊聚类分析法,对舟山渔场及其邻近海域水团的季节特征进行了分析.结果表明,舟山渔场及其邻近海域水团的配置、分布范围、温盐特性和营养盐含量都有明显的季节特征.其中,冬季在全海域共有3个水团(江浙沿岸水、台湾暖流表层水和黄海混合水),而夏季则存在4个水团(江浙沿岸水、台湾暖流表层水、台湾暖流深层水和黄海混合水);冬季,江浙沿岸水的分布范围较小,温度偏低,盐度略高,营养盐偏高,而夏季,其分布范围较大,温度偏高,盐度偏低,营养盐偏低;冬季,台湾暖流表层水北伸最强,厚度最厚,温度最低,盐度最高,硅酸盐和硝酸盐偏高,而夏季,则北伸最弱,厚度最薄,温度最高,盐度最低,硅酸盐和硝酸盐偏低;台湾暖流深层水是一个季节性水团,它含有较丰富的营养盐;黄海混合水的分布范围和营养盐含量也都呈现出明显的季节特征.  相似文献   
5.
西北太平洋上层热含量的时空变化   总被引:1,自引:0,他引:1  
基于全球月平均海温资料、137°E断面海温观测资料、同化水位资料和太平洋850 hPa纬向风资料,利用EOF、功率谱和最大熵谱等分析方法,分析了西北太平洋上层热含量的时空变化,并讨论了热含量变化与水位和赤道太平洋纬向风异常的关系.结果表明,西北太平洋上层热含量具有明显的年际和年代际变化;热含量的年际变化与热带太平洋大尺度海气系统异常相联系,即在El Ni(n)o期间,热含量减少,而在La Ni(n)a期间热含量增多;热含量在20世纪70年代末发生了一次气候跃变,在跃变前热含量偏多,而在跃变后则偏少;热含量与水位间存在着非常一致的同位相年际变化,而这种变化与赤道西、中太平洋的纬向风异常有关.  相似文献   
6.
源地黑潮及其上下游流量的变化特征   总被引:3,自引:1,他引:2  
本文基于长时间序列的海流和温盐资料(最新版SODA高分辩率再分析资料和137°E断面的观测资料),计算了黑潮流系四个主要断面的流量,并分析了它们的变化特征.结果表明,黑潮流系各主要断面流量具有显著的季节性差异,其年际、年代际变化明显.相关分析表明,源地黑潮及其上下游流量变化具有较强的独立性,变化不尽一致,其中,短期气候变化特征可能与热带太平洋的年际变化有明显关联,而年代际变化则可能与发生于北太平洋的年代际变化以及其它副热带中尺度涡旋等变化有一定联系.  相似文献   
7.
基于长时间序列的水温和盐度资料,通过动力计算方法估算了源区黑潮(18°N断面)热输送量,分析了源区黑潮热输送变异和中国近海SST异常的年际、年代际时空变化特征及两者之间的相互关系.结果显示,源区黑潮热输送异常呈现出显著的以2—7、10~20a和约30a为主周期的年际、年代际变化,且具有线性增强的长期变化趋势.并约于1976年前后发生了一次显著气候跃变.中国近海SST年际、年代际异常变化的最显著区域位于渤海、黄海、东海海域和台湾海峡.源区黑潮热输送变异在年际、年代际尺度上与中国近海SST异常变化密切相关,源区黑潮热输送变异可能是影响中国近海SST异常变化的重要因素之一.  相似文献   
8.
基于Argo资料的热带西太平洋上层热含量初步研究   总被引:2,自引:0,他引:2  
根据2004年1月-2008年12月间的Argo剖面浮标观测资料,分析了热带西太平洋上层热含量的空间分布及其季节变化特征,并考察了不同计算深度以及盐度对热含量的影响,且探讨了有关计算上层热含量的深度选取问题.结果表明:(1)热带西太平洋上层热含量的气候态大致呈“马鞍型”分布,即在12°N以北和5°S以南海域上层热含量都较高,而在2°-12°N之间热含量则较低,特别在棉兰老冷涡区热含量很低;(2)研究海域的上层热含量一年四季均呈这种两高一低的空间分布形势,但强度的季节性变幅却较大,整个研究海域的热含量体现为春季最高,夏季最低,秋冬季居中的特点,但两个高热含量区和低热含量带的热含量各呈现出不同的季节变化;(3)温跃层深度的波动对海洋上层热含量的影响要大于上混合层,尤其在南北纬10°以外海域.因此,计算西太平洋上层热含量时,应将积分深度取为温跃层下界深度,才有可能比较真实地反映该海域的上层热含量的分布和变化,若为简单起见,取等深度计算时,以700m为宜,此外,盐度对上层热含量的影响也应引起重视.  相似文献   
9.
东海黑潮热输送变异与经向风异常   总被引:7,自引:0,他引:7  
根据日本气象厅1956-2003年在PN断面获得的观测资料和NCEP 850 hPa风资料,分析了东海黑潮热输送的变异特征,并探讨了冬、夏季热输送与风异常的关系.结果表明,黑潮通过PN断面多年平均的热输送达16.52×1014 W,热输送的年际和年代际变化都很明显,其主要变化周期为准2 a,5 a和22 a.黑潮热输送在1976年前后发生了一次由弱到强的气候跃变.黑潮热输送具有很强的长期的线性增加趋势,在1956-2003年增加了约6.51×1014 W.相关与合成分析结果显示,南海南部和黑潮流域上空的经向风异常对东海黑潮热输送的年际变化有重要影响,即当偏南风异常增强时,黑潮热输送将加强,反之将减弱.  相似文献   
10.
东海黑潮热输送及其与黄淮平原区汛期降水的关系   总被引:22,自引:0,他引:22  
根据日本气象厅1956—1990年PN(G)断面观测资料分析东海黑潮热输送的变异特征,并探讨其冬季热输送与黄淮平原区汛期(6-8月)降水的关系。结果表明,黑潮通过PN(G)断面多年平均的热输送达15.74×1014W,其中冬季热输送的年际和长期变化特别明显;冬季热输送年际变化的周期主要为对.23.4a、3.5a、和2.6a,长期变化总趋势是70年代末以前各年热输送距平均为负值,对年代末接近多年平均值,进入80年代各年距平值不仅为正且逐年增大;东海黑潮冬季热输送与黄淮平原区汛期降水具有相近的长期变化趋势,两者间存在较好的负相关关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号