首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   13篇
  国内免费   2篇
测绘学   20篇
大气科学   20篇
地球物理   144篇
地质学   155篇
海洋学   73篇
天文学   82篇
综合类   1篇
自然地理   72篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   9篇
  2014年   12篇
  2013年   32篇
  2012年   12篇
  2011年   29篇
  2010年   16篇
  2009年   15篇
  2008年   19篇
  2007年   16篇
  2006年   18篇
  2005年   13篇
  2004年   14篇
  2003年   24篇
  2002年   14篇
  2001年   11篇
  2000年   18篇
  1999年   8篇
  1998年   11篇
  1997年   13篇
  1996年   15篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   8篇
  1990年   8篇
  1988年   4篇
  1987年   10篇
  1986年   14篇
  1985年   14篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   13篇
  1980年   15篇
  1979年   9篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1974年   10篇
  1973年   6篇
  1972年   3篇
  1968年   5篇
  1948年   3篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
511.
On 6 September, 1982 very regular, narrow-band radio pulsations of solar origin were observed on the 410 MHz solar radiometer at the Learmonth Solar Observatory. Initial low-amplitude pulsations with a period of about 3 min gave way to large-amplitude pulsations with a period of about 5 min following a 1B solar flare. Position measurements at 327 MHz with the Culgoora Radioheliograph indicated two sources: a strong, extended source located above a unipolar magnetic region near the centre of the disk and a much weaker source near the west limb. Polarisation measurements indicate the burst to be plasma emission.The radio pulsations were unique in their association with both sympathetic radio emission and optical flares at widely different locations. Interpretation of the observations in terms of sausage mode standing oscillations in a coronal flux tube leads to an estimate of the magnetic flux density B = 45 G at the 400 MHz plasma level. Also a 2.8-fold density increase in the loop after the 1B flare is inferred.  相似文献   
512.
Lechuguilla Cave is a deep, extensive, gypsumand sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (>90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1)Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) soils and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophicSeliberius andCaulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5×105 colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave.  相似文献   
513.
Field measurements of bottom boundary layer and sediment-transport processes were made on the Louisiana inner continental shelf in spring 1992 at a depth of 15.5 m, and in spring and summer 1993 at a depth of 20.5 m. Two different wave–current boundary layer/sediment-transport models were applied to the measured near-bed flows. In addition, the log-profile method was applied to estimate hydraulic roughness and bed stress. Consistent with the results of others, our measurements show that near-bed flows were very weak under non-storm conditions. Bed stresses were typically too low to resuspend bed sediments. However, the advection of high-turbidity layers or plumes past the instrumentation apparently caused a sustained period of high suspended sediment concentration throughout the log layer in spring 1993. In the absence of wave activity or high suspended sediment concentrations, boundary layer profiles showed the bed to have been hydraulically very smooth with cm. However, wave agitation, combined with increased suspended sediment concentration caused hydraulically rough conditions with cm.  相似文献   
514.
During several decades of investigation, the East Pacific Rise seafloor-spreading center at 9°-10°N has been explored by marine geologists, geophysicists, chemists, and biologists, and has emerged as one of the best studied sections of the global midocean ridge. It is an example of a region for which there is now a great wealth of observational data, results, and data-driven theoretical studies. However, these have yet to be fully utilized, either by research scientists or educators. While the situation is improving, a large amount of data, results, and related theoretical models still exist either in an inert, noninteractive form (e.g., journal publications) or as unlinked and currently incompatible computer data or algorithms. Presented here is the prototype of a computational environment and toolset, called the Virtual Research Vessel, to improve the situation by providing marine scientists and educators with simultaneous access to data, maps, and numerical models. While infrastructure is desired and needed for ready access to data and the resulting maps via web GIS in order to link disparate data sets (data to data), it is argued that data must also be linked to models for better exploration of new relations between observables, refinement of numerical simulations, and the quantitative evaluation of scientific hypotheses. For widespread data access, web GIS is therefore only a preliminary step rather than a final solution, and the ongoing implementation of the Virtual Research Vessel (scheduled for final completion in 2004-2005) is a case study for the midocean ridge community to test the effectiveness of moving beyond the data-to-data mode towards data-to-models and data-to-interpretation.  相似文献   
515.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   
516.
517.
518.
Inter-annual to inter-decadal changes of hydrographic structure and circulation in the subpolar North Atlantic are studied using a coarse resolution ocean circulation model. The study covers 1949 through 2001, inclusive. A “time-mean state nudging” method is applied to assimilate the observed hydrographic climatology into the model. The method significantly reduces model biases in the long-term mean distribution of temperature and salinity, which commonly exist in coarse-resolution ocean models. By reducing the time-mean biases we also significantly improve the model’s representation of inter-annual to inter-decadal variations. In the central Labrador Sea, the model broadly reproduces the heat and salt variations of the Labrador Sea Water (LSW) as revealed by hydrographic observations. Model sensitivity experiments confirm that the low-frequency hydrographic changes in the central Labrador Sea are closely related to changes in the intensity and depth of deep convection. Changes in surface heat flux associated with the winter North Atlantic Oscillation (NAO) index play a major role in driving the changes in T–S and sea surface height (SSH). Changes in wind stress play a secondary role in driving these changes but are important in driving the changes in the depth-integrated circulation. The total changes in both SSH and depth-integrated circulation are almost a linear combination of the separate influences of variable buoyancy and momentum fluxes.  相似文献   
519.
Swath MR1 data from the remnant Colville and active Kermadec arc margins, south of 33°30 S (SW Pacific), record the structural morphology and evolution of the rifted, and now separate portions, of the proto-Colville–Kermadec arc flanking the actively widening southern Havre Trough back-arc basin associated with Pacific-Australian plate convergence. Both the remnant Colville and active Kermadec arc margins comprise opposing, asymmetric, partially basement exposed, segmented ridges. Differences in morphology between the two ridges are, however, observed. The single, near linear, border fault system, with relief of 1000 m, along the western edge of the Kermadec margin is interpreted to be the exposed fault escarpment of a major, west-dipping, detachment fault. In contrast, two major zig-zag border fault systems along the eastern edge of the Colville Ridge, bounding a back-tilted ridge flank terrace, are interpreted as major antithetic faults between the remnant arc and back-arc region. This contrast in structural morphology coincides with, respectively, lesser and greater degrees of both active tectonism and channel-canyon erosion, on the remnant Colville and active Kermadec margins. These differences are interpreted to reflect the progressive trenchward collapse and associated greater rift flank uplift and incisive erosion of the Kermadec foot-wall contrasting with the non-collapse and relatively lesser rift flank uplift and ridge erosion of the Colville hanging-wall. The data provide further constraints on the early evolution of the Havre Trough in particular, and back-arc basins in general.  相似文献   
520.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号