首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   24篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   79篇
地质学   97篇
海洋学   22篇
天文学   48篇
综合类   3篇
自然地理   28篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   14篇
  2016年   17篇
  2015年   10篇
  2014年   15篇
  2013年   15篇
  2012年   15篇
  2011年   18篇
  2010年   15篇
  2009年   25篇
  2008年   16篇
  2007年   19篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
261.
Vegetated mid-channel islands play an important though poorly understood role in the sediment dynamics and morphology of tide-dominated deltas. Meinmahla Island is a mangrove-forest preserve at the mouth of the Bogale distributary channel, in the Ayeyarwady Delta, Myanmar. In this relatively unaltered mid-channel island, sediment dynamics can be directly connected to morphology. Field measurements from 2017 to 2019 provide insight into the pathways for sediment transport and resulting morphological evolution. Water depth, salinity and turbidity were monitored semi-continuously, and velocity profilers with turbidity and salinity sensors were deployed seasonally in single-entrance (dead-end/blind) and multi-entrance tidal channels of the island. The morphological evolution was evaluated using grain size, 210Pb geochronology, remote sensing and channel surveys. The data show that ebb-dominant, single-entrance channels along the island exterior import sediment year-round to the land surface. However, these exterior channels do not deliver enough sediment to maintain the observed ca 0.8 cm/yr accretion rate, and most of the sediment import occurs via interior, multi-entrance channels. Interior channels retain water masses that are physically distinct from the water in the Bogale distributary, and estuarine processes at the tidal-channel mouths import sediment into the island. Sediment is sourced to the island from upriver in the wet season and from the Gulf of Mottoma in the dry season, as the location of the estuary shifts seasonally within the Bogale distributary. The salinity and biogeochemistry of the distributary water are affected by interactions with sediment and groundwater in the island interior. The largest interior channels have remained remarkably stable while the island has aggraded and prograded over decadal timescales. However, the studied multi-entrance channel is responding to a drainage-network change by narrowing and shoaling. Overall, mid-channel islands trap sediment and associated nutrients at the river–ocean interface, and these resilient landscape features evolve in response to changes in drainage-network connectivity.  相似文献   
262.
Fallout radionuclides (FRNs) 137Cs and 210Pb are well established as tracers of surface and sub‐surface soil erosion contributing sediment to river systems. However, without additional information, it has not been possible to distinguish sub‐surface soil erosion sources. Here, we use the FRN 7Be (half‐life 53 days) in combination with 137Cs and excess 210Pb to trace the form of erosion contributing sediment in three large river catchments in eastern Australia; the Logan River (area 3700 km2), Bowen River (9400 km2) and Mitchell River (4700 km2). We show that the combination of 137Cs, excess 210Pb and 7Be can discriminate horizontally aligned sub‐surface erosion sources (rilled and scalded hillslopes and the floors of incised drainage lines and gully ‘badland’ areas) from vertical erosion sources (channel banks and gully walls). Specifically, sub‐surface sources of sediment eroded during high rainfall and high river flow events have been distinguished by the ability of rainfall‐derived 7Be to label horizontal soil surfaces, but not vertical. Our results indicate that in the two northern catchments, erosion of horizontal sub‐surface soil sources contributed almost as much fine river sediment as vertical channel banks, and several times the contribution of hillslope topsoils. This result improves on source discrimination provided previously and indicates that in some areas erosion of hillslope soils may contribute significantly to sediment yield, but not as topsoil loss. We find that in north‐eastern Australia, scalded areas on hillslopes and incising drainage lines may be sediment sources of comparable importance to vertical channel banks. Previous studies have used the combination of 137Cs, excess 210Pb and 7Be to estimate soils losses at the hillslope scale. Here, we show that with timely and judicious sampling of soil and sediment during and immediately after high flow events 7Be measurements can augment fallout 137Cs and 210Pb to provide important erosion source information over large catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
263.
Collaborative management arrangements are increasingly being used in fisheries, yet critical questions remain about the conditions under which these are most successful. Here, we conduct one of the first comprehensive tests of Elinor Ostrom's diagnostic framework for analyzing social–ecological systems to examine how 16 socioeconomic and institutional conditions are related the livelihood outcomes in 42 co-management arrangements in five countries across the Indo-Pacific. We combine recent developments in both theory and modeling to address three key challenges among comparative studies of social–ecological systems: the presence of a large number of explanatory mechanisms, variables operating at multiple scales, and the potential for interactions among socio-economic and institutional factors. We find that resource users were more likely to perceive benefits from co-management when they are more involved in decisions, were aware that humans are causal agents of change in marine systems, were wealthier, were not migrants, were in villages with smaller populations and older co-management arrangements, and had clearly established boundaries. Critically, we quantify a number of key interactions between: wealth, dependence on marine resources, involvement in decision-making, and population size that have strong implications for co-management success in terms of livelihood benefits. This study demonstrates that context plays a critical but identifiable role in co-management success.  相似文献   
264.
Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes of particulate components during Spring and Summer of 2003, and Spring of 2005, using a swimmer-excluding sediment trap design capable of measuring fluxes both in a time-series (TS) mode and in a configuration for obtaining particle settling velocity (SV) profiles. On the basis of these studies, we suggest that distinct OM–ballast associations observed in particles sinking at a depth of 200 m imply that the mechanistic basis of the organic matter–ballast association is set in the upper water column above the Twilight Zone, and that the importance of different ballast types follows the seasonal succession of phytoplankton. As in other studies, carbonate appears to enhance the flux of organic matter over opal. Particles must be at least half organic matter before their settling velocity is affected by ballast concentration. This lack of change in ballast composition with SV in particles with <40% OM content suggests that particle SV reaches a maximum because of the increasing importance of inertial drag. Relative amounts of OM and opal decrease with depth due to decomposition and dissolution; carbonates and lithogenic material contribute about the same amount to total mass, or increase slightly, throughout the water column. The high proportion of excess Al cannot be explained by its incorporation into diatom opal or reverse weathering, so Al is most likely adsorbed to particulate oxides. On shorter time scales, dust appears to increase particle flux through its role in aggregation rather than by nutrient inputs enhancing productivity. We suggest that the role of dust as a catalyst in particle formation may be a central mechanism in flux formation in this region, particularly when zooplankton fecal pellet production is low.  相似文献   
265.
LandScan USA is a 90 m population distribution model that is used for a variety of applications, including emergency management. Models should have a measure of accuracy; however, the accuracy of population distribution models is difficult to determine due to the inclusion of multiple input datasets and the lack of quantifiable, observable (validated) data to confirm model output. Validated data enables quantification of: (1) overall model accuracy and (2) changes in model output at different levels of quality control. This article examines the effect of quality control for two national school datasets incorporated as input in LandScan USA for Philadelphia County, Pennsylvania; which had a local, validated school dataset available. The effect of each stage of quality control efforts utilized throughout the LandScan USA process were assessed to determine what level of quality control was required to have a statistically significant change of the model's population distribution. The typical level of quality control for LandScan USA resulted in 36% of schools being moved to the correct location and 20% of missing student enrollments were found, compared to 87% and 98% respectively for the validated dataset. The costs of increasing quality control resulted in a six-fold increase in labor time; however, the additional quality control did not produce statistically significant improvements in the LandScan USA model. Thus, typical quality control efforts for schools in LandScan USA produced a population distribution similar to the validated level of quality control, and can be applied with confidence for policy, planning, and emergency situations.  相似文献   
266.
We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin-wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end-members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end-member is a single MU unit subdivided in seven sub-units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end-members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V-shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite-free pre-Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post-Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments.  相似文献   
267.
Shen  Qiushi  Zhang  Lu  Kimirei  Ismael Aaron  Wang  Zhaode  Gao  Qun  Chen  Shuang  Yu  Cheng 《中国海洋湖沼学报》2019,37(1):134-145
The vertical distributions of trace metals and physicochemical parameters in water columns in Kigoma Bay and Kungwe Bay in eastern Lake Tanganyika, Tanzania, were studied. The Al, Ba, Ca, Co,K, Mg, Mn, Mo, Na, Sn, Sr, and V concentrations were low and varied very little with depth. The toxic heavy metal(As, Cr, Cu, Ni, Pb, and Zn) concentrations were relatively high in the surface water, and the Cu, Ni, Pb, and Zn concentrations decreased with depth. Principal component and cluster analyses indicated that the metals in the lake had three main sources. Al, Ba, Ca, Co, Cu, Cr, Mn, Sr, Sn, and V were found to be geogenic; As, Cr, Cu, Mo, Ni, Pb, Sn and Zn anthropogenic; and As, Ca, Co, Mg, and Na biogenic.Human health risk assessments were performed, and it was found that trace metals in the water at most of the sampling sites would cause no potential adverse ef fects or non-carcinogenic health risks through dermal contact or ingestion. However, trace metals in surface water in Kungwe Bay could have certain adverse ef fects on human health through the ingestion pathway(the total hazard quotient for ingestion(ΣHQi ng)was 1.75(a value 1 was de?ned as possibly indicating adverse ef fects). The Pb HQi ng for surface water in Kungwe Bay was 1.50 and contributed 80% of the ΣHQ_(ing_, implying that Pb pollution is a water quality and safety problem that needs to be carefully monitored and the potential sources identi?ed.  相似文献   
268.
This research demonstrates that groundwater contaminated by a relatively dilute but persistent concentration of 1,4‐dioxane (1,4‐D), approximately 60 μg/L, and chlorinated aliphatic co‐contaminants (1.4 to 10 μg/L) can be efficiently and reliably treated by in situ aerobic cometabolic biodegradation (ACB). A field trial lasting 265 days was conducted at Operable Unit D at the former McClellan Air Force Base and involved establishing an in situ ACB reactor through amending recirculated groundwater with propane and oxygen. The stimulated indigenous microbial population was able to consistently degrade 1,4‐D to below 3 μg/L while the co‐contaminants trichloroethene (TCE) and 1,2‐dichloroethane (1,2‐DCA) were decreased to below 1 μg/L and 0.18 μg/L, respectively. A stable treatment efficiency of more than 95% removal for 1,4‐D and 1,2‐DCA and of more than 90% removal for TCE was achieved. High treatment efficiencies for 1,4‐D and all co‐contaminants were sustained even without propane and oxygen addition for a 2‐week period.  相似文献   
269.
Pump‐and‐treat (P&T) is a widely applied remedy for groundwater remediation at many types of sites for multiple types of contaminants. Decisions regarding major changes in the remediation approach are an important element of environmental remediation management for a site using P&T. While existing guidance documents provide information on design, operation, and optimization for P&T systems, these documents do not provide specific technical guidance to support remedy decisions regarding when to transition to a new remedy or to initiate closure of the P&T remedy. A structured approach for P&T performance assessment was developed and is described herein, using analysis of three example P&T systems. These examples highlight key aspects of the performance assessment decision logic and represent assessment outcomes associated with optimizing the P&T system, transitioning from P&T to natural attenuation, and supplementing P&T with another technology to hasten transition to natural attenuation.  相似文献   
270.
In this paper, we study the long-term dynamical evolution of highly elliptical orbits in the medium-Earth orbit region around the Earth. The real population consists primarily of Geosynchronous Transfer Orbits (GTOs), launched at specific inclinations, Molniya-type satellites and related debris. We performed a suite of long-term numerical integrations (up to 200 years) within a realistic dynamical model, aimed primarily at recording the dynamical lifetime of such orbits (defined as the time needed for atmospheric reentry) and understanding its dependence on initial conditions and other parameters, such as the area-to-mass ratio (A / m). Our results are presented in the form of 2-D lifetime maps, for different values of inclination, A / m, and drag coefficient. We find that the majority of small debris (\(>70\%\), depending on the inclination) can naturally reenter within 25–90 years, but these numbers are significantly less optimistic for large debris (e.g., upper stages), with the notable exception of those launched from high latitude (Baikonur). We estimate the reentry probability and mean dynamical lifetime for different classes of GTOs and we find that both quantities depend primarily and strongly on initial perigee altitude. Atmospheric drag and higher A / m values extend the reentry zones, especially at low inclinations. For high inclinations, this dependence is weakened, as the primary mechanisms leading to reentry are overlapping lunisolar resonances. This study forms part of the EC-funded (H2020) “ReDSHIFT” project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号