首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   24篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   79篇
地质学   97篇
海洋学   22篇
天文学   48篇
综合类   3篇
自然地理   28篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   14篇
  2016年   17篇
  2015年   10篇
  2014年   15篇
  2013年   15篇
  2012年   15篇
  2011年   18篇
  2010年   15篇
  2009年   25篇
  2008年   16篇
  2007年   19篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
211.
The effect of ocean mixed layer depth on climate is explored in a suite of slab ocean aquaplanet simulations with different mixed layer depths ranging from a globally uniform value of 50–2.4 m. In addition to the expected increase in the amplitude of the seasonal cycle in temperature with decreasing ocean mixed layer depth, the simulated climates differ in several less intuitive ways including fundamental changes in the annual mean climate. The phase of seasonal cycle in temperature differs non-monotonically with increasing ocean mixed layer depth, reaching a maximum in the 12 m slab depth simulation. This result is a consequence of the change in the source of the seasonal heating of the atmosphere across the suite of simulations. In the shallow ocean runs, the seasonal heating of the atmosphere is dominated by the surface energy fluxes whereas the seasonal heating is dominated by direct shortwave absorption within the atmospheric column in the deep ocean runs. The surface fluxes are increasingly lagged with respect to the insolation as the ocean deepens which accounts for the increase in phase lag from the shallow to mid-depth runs. The direct shortwave absorption is in phase with insolation, and thus the total heating comes back in phase with the insolation as the ocean deepens more and the direct shortwave absorption dominates the seasonal heating of the atmosphere. The intertropical convergence zone follows the seasonally varying insolation and maximum sea surface temperatures into the summer hemisphere in the shallow ocean runs whereas it stays fairly close to the equator in the deep ocean runs. As a consequence, the tropical precipitation and region of high planetary albedo is spread more broadly across the low latitudes in the shallow runs, resulting in an apparent expansion of the tropics relative to the deep ocean runs. As a result, the global and annual mean planetary albedo is substantially (20 %) higher in the shallow ocean simulations which results in a colder (7C) global and annual mean surface temperature. The increased tropical planetary albedo in the shallow ocean simulations also results in a decreased equator-to-pole gradient in absorbed shortwave radiation and drives a severely reduced (≈50 %) meridional energy transport relative to the deep ocean runs. As a result, the atmospheric eddies are weakened and shifted poleward (away from the high albedo tropics) and the eddy driven jet is also reduced and shifted poleward by 15° relative to the deep ocean run.  相似文献   
212.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   
213.
Abstract– The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2‐type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large l ‐enantiomeric excesses (l ee ~ 43–59%) of the α‐hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another α‐hydrogen protein amino acid, was found to be nearly racemic (d ≈ l ) using both techniques. Carbon isotope measurements of d ‐ and l ‐aspartic acid and d ‐ and l ‐alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the l ‐excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid–solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial l ‐enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large l ‐enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of nonterrestrial l ‐proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.  相似文献   
214.
Abstract– Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound‐specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α‐H, α‐NH2 amino acids that correspond to predictions made for formation via Strecker‐cyanohydrin synthesis. We also observe light δ13C signatures for β‐alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight‐chain, amine‐terminal amino acids (n‐ω‐amino acids). Higher deuterium enrichments are observed in α‐methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent‐body chemistry.  相似文献   
215.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   
216.
Iron-oxide crystallinity increases during soil redox oscillations   总被引:2,自引:0,他引:2  
An Inceptisol A-horizon from Hawaii was subjected to a series of reduction-oxidation cycles—14 d cycle length over a 56 d duration—across the “soil-Fe” [Fe(OH)3.Fe2+(aq), log Ko = 15.74] equilibrium in triplicate redox-stat reactors. Each reducing event simulated the flush of organic C and diminished O2 that accompanies a rainfall-induced leaching of bioavailable reductants from the forest floor into mineral soil. The soil contained considerable amounts of short-range ordered (SRO) minerals (e.g., nano-goethite and allophane) and organic matter (11% org-C). Room temperature and cryogenic 57Fe Mössbauer spectroscopy showed that the iron-bearing minerals were dominated by nano- to micro-scale goethite, and that ferrihydrite was not present. Over the four full cycles, fluctuations in Eh (from 200 to 700 mV) and pFe2+ (from 2.5 to 5.5) were inversely correlated with those of pH (5.5 to 4). Here, we focus on the solubility dynamics of the framework elements (Si, Fe, Ti, and Al) that constitute 35% of the oxygen-free soil dry mass. Intra-cycle oscillations in dissolved (<3 kDa) metals peaked during the reduction half-cycles. Similar intra-cycle oscillations were observed in the HCl and acid ammonium oxalate (AAO) extractable pools. The cumulative response of soil solids during multiple redox oscillations included: (1) a decrease in most HCl and AAO extractable metals and (2) a transformation of SRO Fe (as nano-goethite) to micro-crystalline goethite and micro-crystalline hematite. This may be the first direct demonstration that Fe oxide crystallinity increases during redox oscillations—an a priori unexpected result.  相似文献   
217.
The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ∼20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of LaN > 1 and PrN > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth’s history.  相似文献   
218.
Mesoscale processes that form due to changes in surface characteristics play a dominant role in the development of the planetary boundary layer structure and the formation of convection. In this study, effects of the Sandhills region of North and South Carolina on mesoscale processes are examined. Climatological analyses indicate increased convective precipitation in this location as compared to the surrounding region. This is believed to be due to enhanced convection induced by horizontal heat flux gradients caused by sharp changes in soil type and hence the heat capacity of the soil. Simulations using a non-hydrostatic mesoscale model (MM5 version 3.3) were made for a non-precipitation case with a 5-km resolution domain centered over the Carolinas from August 15, 2000 to August 18, 2000. The results showed the existence of a mesoscale circulation over the Sandhills region. Differential heating induced by contrasting soil types dividing the Coastal Plain from the central Piedmont causes this circulation. Sea-breeze circulation often combines with the Sandhills circulation to initiate convection in this region. Diurnal variations are handled well by the model indicating that the thermodynamic structure of the atmosphere is well simulated.  相似文献   
219.
Single crystal 40Ar/39Ar dating of K-feldspars from silicic volcanic rocks containing xenocrysts often yields a spectrum of ages slightly older than those of juvenile sanidine phenocrysts. In contrast, feldspars from thin, low-volume units of the Tertiary (14 Ma) McCullough Pass Tuff define discrete age populations at 14 Ma, 15 Ma, and 1.3 Ga, reflecting the time of eruption, xenocrysts from an older ignimbrite exposed in the caldera wall, and Proterozoic basement K-feldspars, respectively. Conductive cooling and diffusion modelling suggests preservation of such discrete populations is likely only when xenocrystic material is incorporated into the magma very near or at the surface, or is engulfed in thin, rapidly cooled pyroclastic flows during emplacement. Incorporation of xenocrysts into the subvolcanic magma chamber, into thick rhyolite domes or lava flows, or into large, welded ignimbrite sheets will result in partial or total resetting of the K/Ar isotopic system. Similarly, petrographic evidence such as exsolution lamellae may be homogenized under these conditions but not in thin ignimbrites. Extremely low diffusion rates for disordering of the Al–Si tetrahedral siting of basement feldspars suggests that they will retain their ordered structural state given rhyolitic magma temperatures. Thus, even when petrographic and K/Ar isotopic evidence for xenocrystic contamination is obscured, it may be preserved in the form of Al–Si ordering.  相似文献   
220.
The salt marsh periwinkleLittoraria irrorata (Say) remains on the substratum during low tide but climbs above the water on stalks ofSpartina alterniflora Loisel during high tide. Rhythmic tidal migrations may allowL. irrorata to avoid predators such as blue crabsCallinectes sapidus Rathbun that forage when the marsh is inundated. These tidal rhythms may be driven by endogenous clocks or they may be easily entrained. Snails with flexible and entrainable climbing rhythms may be able to avoid predators in unpredictable environments (e.g., when water unexpectedly covers the substratum as in storm surges). We tested the behavioral response ofL. irrorata to different simulated tidal regimes in the laboratory, and the effect of remaining above mean high water (MHW) on snail survivorship in a smallS. alterniflora salt marsh. In laboratory mesocosms, vertical snail position was measured under constant water levels, simulated tidal cycles, and simulated tidal cycles 180° out of phase (reversed). Under constant water levels, snails ceased to migrate vertically after 1 d. When exposed to tidal and reversed tidal cycles, snails migrated in synchrony with the appropriate simulated rhythm.L. irrorata entrained quickly to differing tidal cycles and maintained their position above the water surfce when water levels were high. In a field experiment, snails were tethered toS. alteriflora plants near the substratum and above MHW in the marsh for 1 wk to assess survival. Survival of snails tethered above MHW was sigificantly greater than for snails tethered at the base of plants; no snails in control cages died. Rapid alteration of tidal vertical migrations may allowL. irrorata to avoid predators that forage when water inundates the marsh predictably or unexpectedly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号