首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   17篇
  国内免费   10篇
测绘学   4篇
大气科学   18篇
地球物理   129篇
地质学   168篇
海洋学   125篇
天文学   82篇
综合类   5篇
自然地理   22篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   4篇
  2014年   24篇
  2013年   22篇
  2012年   13篇
  2011年   17篇
  2010年   22篇
  2009年   26篇
  2008年   27篇
  2007年   31篇
  2006年   27篇
  2005年   31篇
  2004年   13篇
  2003年   15篇
  2002年   7篇
  2001年   13篇
  2000年   12篇
  1999年   19篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
551.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   
552.
Cosmic ray exposure (CRE) ages of CM chondrites have been found to have multiple peaks (as many as four), in stark contrast to other groups of chondrites (Nishiizumi and Caffee 2012; Herzog and Caffee 2014). In this study, we sought correlations between the CRE ages and petrography of CM chondrites, and we conclude that the degree of aqueous alteration does appear to vary with the CRE ages—the CMs displaying the most aqueous alteration all have relatively short exposure ages. However, some CMs with low degrees of alteration also have short exposure ages—thus, this apparent correlation is not exclusive. We also found a definite inverse relation between the number of distinctive lithologies in a CM and its exposure age, which could indicate different responses of homogeneous and heterogeneous meteoroids to the space environment between their onset of exposure (exhumation and ejection from the parent body) and arrival at Earth. Breccias have more internal surfaces of lithologic discontinuity, possibly resulting in weaker meteoroids that disintegrate more readily than their more homogeneous counterparts. Our results suggest that CM chondrite regoliths consist of numerous genomict lithologies in a breccia with millimeter‐ to decimeter‐scale clasts, with varying degree of heating/metamorphism.  相似文献   
553.
We present a methodological approach to detect heated soil on ancient sites, using magnetic measurements. The method is based on changes in magnetic signals of soil by heating. The following three types of soil were used for testing the method: silty soil (SS), weathered volcanic ash (WVA, = loam) and fairly fresh volcanic ash (VA) called Odori tephra. On heating above 250–600°C, the magnetic susceptibility and remanent magnetization intensity increased for the SS and WVA samples, reflecting chemical alteration of magnetic minerals (from goethites to magnetites through hematites). The VA sample showed no susceptibility change suggesting the absence of goethites within it. On heating below 250°C, only the intensities of all the samples increased. This is possibly due to acquisition of thermal remanent magnetization. The largest change of the magnetic signals was identified for the SS sample and the smallest one was seen for the VA sample. Therefore, the in situ susceptibility measurement, which is the nondestructive and indirect method, seems to be effective to detect heated soil for sites of aqueous deposits as the SS. On the other hand, for sites of aeolian deposits as the WVA (loam) and VA, the intensity measurement of collected soils seems to be the most reliable method to detect evidence of heating. The degree of the magnetic stability (coercivity) against progressive alternating-field demagnetization was also an important parameter, indicating whether the investigated soils were heated or unheated. © 1999 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号