首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
大气科学   15篇
地球物理   25篇
地质学   19篇
海洋学   3篇
天文学   9篇
自然地理   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有72条查询结果,搜索用时 328 毫秒
21.
22.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   

23.
The present paper deals with the pulsation period variability of the high-amplitude δ Scuti star GP Andromedae using a data set covering a time base of 26.9 years. The possibility of a periodic component (reflecting the light-time effect induced by a hypothetic binarity) in the O-C curve is inferred. The presence of this periodicity in the period variation of GP And leads to a diminution of the discrepancy between predicted and observed relative period change rates. The hypothesis of the existence of an unseen companion is discussed. The statistical analysis of the final O-C residuals distribution, indicates their normal or close to normal character. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
24.
25.
The applicability of existing nonlinear (triad) spectral models for steep slopes (0.1–0.2) characteristic of reef environments was investigated, using both deterministic (phase-resolving) and stochastic (phased-averaged) formulations. Model performance was tested using laboratory observations of unidirectional wave transformation over steep and smooth bathymetry profiles. The models, developed for mild slopes, were implemented with minimal modifications (the inclusion of breaking parametrizations and linear steep-slope corrections) required by laboratory data. The deterministic model produced typically more accurate predictions than the stochastic one, but the phase averaged formulation proved fast enough to allow for an inverse modeling search for the optimal breaking parametrization. The effects of the additional assumptions of the stochastic approach resulted in a slower than observed evolution of the infragravity band. Despite the challenge posed by the fast wave evolution and energetic breaking characteristic to the steep reef slopes, both formulations performed overall well, and should be considered as good provisional candidates for use in numerical investigation of wave–current interaction processes on steep reefs.  相似文献   
26.
A variability survey on the shape of the light curve of the classical Cepheid DL Cas has been performed on the basis of Johnson V photometry data covering about 38 years. The input parameters (mean magnitude, pulsation frequency and period, light curve amplitude, harmonics amplitudes, Fourier type structural parameters) for our study were determined through the Fourier decomposition technique applied to each data set. The analysis of the outcoming time series, using different and complementary methods, seems to indicate the constancy of these parameters within the precision limits of the available data, although the hypothesis of the presence of a low level variability cannot be excluded. The only exception is the pulsation period, which displays a possible increasing trend with a rate of 0.109 ± 0.037 s yr−1. This trend may be, at least partly, an effect of the unequal precision of pulsation period estimated values, corresponding to each considered data set. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
27.
A study of the orbital period variation of the W UMa system CK Bootis is made using an extended observational time base. The biperiodicity of the orbital period modulation is emphasized. Both detected periodicities (24.14 yr and 10.62 yr) cannot be explained through the light-time effect unless the companion would be a white dwarf as suggested by other authors, too. Moreover, we also argue that, nowadays at least, it seems that there is no causal relation between the orbital period variation and the recently discovered visual companion. Consequently, we infer that at least one of the two periodicities may be related to the magnetic activity cycles in the component stars of CK Boo, while the other periodicity could be related to the presence of a fourth companion in the system.  相似文献   
28.
Cenozoic geodynamics of the Bering Sea region   总被引:1,自引:0,他引:1  
In the Early Cenozoic before origination of the Aleutian subduction zone 50–47 Ma ago, the northwestern (Asian) and northeastern (North American) parts of the continental framework of the Pacific Ocean were active continental margins. In the northwestern part, the island-arc situation, which arose in the Coniacian, remained with retention of the normal lateral series: continent-marginal sea-island arc-ocean. In the northeastern part, consumption of the oceanic crust beneath the southern margin of the continental Bering shelf also continued from the Late Cretaceous with the formation of the suprasubduction volcanic belt. The northwestern and northeastern parts of the Paleopacific were probably separated by a continuation of the Kula-Pacific Transform Fracture Zone. Change of the movement of the Pacific oceanic plates from the NNW to NW in the middle Eocene (50–47 Ma ago) was a cause of the origin of the Aleutian subduction zone and related Aleutian island arc. In the captured part of the Paleopacific (proto-Bering Sea), the ongoing displacement of North America relative to Eurasia in the middle-late Eocene gave rise to the formation of internal structural elements of the marginal sea: the imbricate nappe structure of the Shirshov Ridge and the island arc of the Bowers Ridge. The Late Cenozoic evolution was controlled by subduction beneath the Kamchatka margin and its convergence with the Kronotsky Terrane in the south. A similar convergence of the Koryak margin with the Goven Terrane occurred in the north. The Komandorsky minor oceanic basin opened in the back zone of this terrane. Paleotectonic reconstructions for 68–60, 56–52, 50–38, 30–15, and 15–6 Ma are presented.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号