首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   13篇
  国内免费   2篇
测绘学   7篇
大气科学   17篇
地球物理   18篇
地质学   54篇
海洋学   14篇
天文学   19篇
综合类   1篇
自然地理   12篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
51.
Carbon Capture Sequestration (CCS) projects require, for safety reasons, monitoring programmes focused on surveying gas leakage on the surface. Generally, these programmes include detection of chemical tracers that, once on the surface, could be associated with CO2 degassing. We take a different approach by analysing feasibility of applying electrical surface techniques, specifically Self-Potential. A laboratory-scale model, using water-sand, was built for simulating a leakage scenario being monitored with non-polarisable electrodes. Electrical potentials were measured before, during and after gas injection (CO2 and N2) to determine if gas leakage is detectable. Variations of settings were done for assessing how the electrical potentials changed according to size of electrodes, distance from electrodes to the gas source, and type of gas. Results indicated that a degassing event is indeed detectable on electrodes located above injection source. Although the amount of gas could not be quantified from signals, injection timespan and increasing of injection rate were identified. Even though conditions of experiments were highly controlled contrasting to those usually found at field scale, we project that Self-Potential is a promising tool for detecting CO2 leakage if electrodes are properly placed.  相似文献   
52.
We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below ?4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating related to Alba Mons volcanism, which acted upon a sequence of lavas, outflow channel sediments, and polar ice deposits centered within the Scandia region. These volatile-enriched sediments may have been in a state of partial volatile melt, resulting in the mobilization of deeply buried ancient materials and their ascent and emergence as sediment and mud breccia diapirs to form tholi features. Similar subsurface instabilities proximal to Alba Mons may have led to surface disruption, as suggested by local and regional scarps, mesas, moats, and knob fields.  相似文献   
53.
This study examines the lateral distribution of hydromorphy in the fine‐grained alluvial deposits of the Eocene Pondaung Formation, central Myanmar. Through detailed outcrop analysis and using a combined sedimentological and pedological approach, this study proposes a reconstruction of Pondaung overbank floodplain palaeoenvironments. The variations of hydromorphic features in the different overbank sub‐environments are then discussed and used to build a model of hydromorphic variability in alluvial deposits. Two main architectural associations with distinctive lithofacies and pedogenic features were identified, corresponding to different sub‐environments: heterolithic deposits and extensive mudstone successions. The heterolithic deposits display variegated fine‐grained lithofacies and contain poorly developed palaeosols with gley and vertic features, which are interpreted to reflect a seasonal wetlands landscape, developed in actively aggrading avulsion belts. Extensive mudstone successions with Vertisols that locally exhibit mukkara‐style pseudogley features are interpreted to represent a distal open‐forested environment. The palaeosols of both sub‐environments display dense local hydromorphic variations they are also characterized by a gradual shift from gley‐dominated to pseudogley‐dominated features with increasing distance from the avulsion belt. The clay‐dominated lithology of the floodplain parent material, which forms numerous subsurface permeability barriers, is shown to have acted as a fundamental control in limiting water‐table dynamics in coarse‐grained parts of the succession, thereby favouring hydromorphic variability. Palaeosol sequences of the Pondaung Formation contrast with the soil‐landscape associations described in other studies and provide an alternative model with which to account for the hydromorphic variability in poorly drained, alluvial soils. The model proposed as an outcome of this study demonstrates that hydromorphic variations can be dramatic in floodplains where permeability barriers are numerous. Further, the model stresses the importance of undertaking detailed lateral palaeosol analyses prior to making interpretations regarding hydromorphic variability.  相似文献   
54.
The Chopf Member is a glauconitic, phosphate-bearing succession that occurs in the distal part of the Helvetic Alps (eastern Switzerland). The recent discovery of age-diagnostic ammonites within this horizon allows for its attribution to the lower part of the Gerhardtia sartousiana zone (middle Late Barremian). This new age corresponds to a maximal age for the onset of the Schrattenkalk Fm. in this area, and is coeval with the onset of the Urgonian facies in other parts of the western Tethyan realm. This new age allows also for a more precise dating of Late Barremian δ13C curves. To cite this article: S. Bodin et al., C. R. Geoscience 338 (2006).  相似文献   
55.
56.
Abstract

Hail and rain data collected in the National Hail Research Experiment's 1976 dense precipitation network have proved useful in defining the requirements of hail measuring networks. It is shown, at least for the hailstorm of 22 June 1976, that the primary maxima and minima of the spatial distribution of hail mass are revealed by a hailpad spacing of about 4 km, and that increasing detail obtains with smaller spacings until with spacings of 0.4 to 0.8 km finer scale features with dimensions of 1–3 km become defined. Monte‐Carlo and conventional statistical analysis show that the confidence limits on the errer in estimating the true hail mass for a storm increase approximately linearly with the mean spacing of hailpads. For the hailfall of 22 June 1976, there is 90% confidence that the true hail mass is estimated within ± 10% for a hailpad spacing of 1.7 km. Estimates of hail kinetic energy and number of hailstones of this accuracy require that hailpads be approximately 10–20% closer or farther apart, respectively. There is no simple numerical relation between the densities of hailpad and wedge raingauge networks covering the same area such that, if satisfied, the networks would then provide estimates of hail mass and total precipitation of the same accuracy for any storm. There is considerable daily variation in the size of hailswaths and in the spatial distribution of hail mass within them, pointing to the need for a climatological study of these aspects of hailfall to assess properly the requirements that a hail network must meet in a given region.  相似文献   
57.
Saprolite formation rates influence many important geological and environmental issues ranging from agricultural productivity to landscape evolution. Here we investigate the chemical and physical transformations that occur during weathering by studying small-scale “saprolites” in the form of weathering rinds, which form on rock in soil or saprolite and grow in thickness without physical disturbance with time. We compare detailed observations of weathered basalt clasts from a chronosequence of alluvial terraces in Costa Rica to diffusion-reaction simulations of rind formation using the fully coupled reactive transport model CrunchFlow. The four characteristic features of the weathered basalts which were specifically used as criteria for model comparisons include (1) the mineralogy of weathering products, (2) weathering rind thickness, (3) the coincidence of plagioclase and augite reaction fronts, and (4) the thickness of the zones of mineral reaction, i.e. reaction fronts. Four model scenarios were completed with varying levels of complexity and degrees of success in matching the observations. To fit the model to all four criteria, however, it was necessary to (1) treat diffusivity using a threshold in which it increased once porosity exceeded a critical value of 9%, and (2) treat mineral surface area as a fitting factor. This latter approach was presumably necessary because the mineral-water surface area of the connected (accessible) porosity in the Costa Rica samples is much less than the total porosity (Navarre-Sitchler et al., 2009). The model-fit surface area, here termed reacting surface area, was much smaller than the BET-measured surface area determined for powdered basaltic material. In the parent basalt, reacting surface area and diffusivity are low due to low pore connectivity, and early weathering is therefore transport controlled. However, as pore connectivity increases as a result of weathering, the reacting surface area and diffusivity also increase and weathering becomes controlled by mineral reaction kinetics. The transition point between transport and kinetic control appears to be related to a critical porosity (9%) at which pore connectivity is high enough to allow rapid transport. Based on these simulations, we argue that the rate of weathering front advance is controlled by the rate at which porosity is created in the weathering interface, and that this porosity increases because of mineral dissolution following a rate that is largely surface-reaction controlled.  相似文献   
58.
59.
Imaging of the heliosphere is a burgeoning area of research. As a result, it is awash with new results, using novel applications, and is demonstrating great potential for future research in a wide range of topical areas. The STEREO (Solar TErrestrial RElations Observatory) Heliospheric Imager (HI) instruments are at the heart of this new development, building on the pioneering observations of the SMEI (Solar Mass Ejection Imager) instrument aboard the Coriolis spacecraft. Other earlier heliospheric imaging systems have included ground-based interplanetary scintillation (IPS) facilities and the photometers on the Helios spacecraft. With the HI instruments, we now have routine wide-angle imaging of the inner heliosphere, from vantage points outside the Sun-Earth line. HI has been used to investigate the development of coronal mass ejections (CMEs) as they pass through the heliosphere to 1 AU and beyond. Synoptic mapping has also allowed us to see graphic illustrations of the nature of mass outflow as a function of distance from the Sun – in particular, stressing the complexity of the near-Sun solar wind. The instruments have also been used to image co-rotating interaction regions (CIRs), to study the interaction of comets with the solar wind and CMEs, and to witness the impact of CMEs and CIRs on planets. The very nature of this area of research – which brings together aspects of solar physics, space-environment physics, and solar-terrestrial physics – means that the research papers are spread among a wide range of journals from different disciplines. Thus, in this special issue, it is timely and appropriate to provide a review of the results of the first two years of the HI investigations.  相似文献   
60.
The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically controlled waterways associated with these features. This hypothesis would explain why these features were not completely destroyed. During the Late Amazonian, high-obliquity conditions may have led to the removal of large volumes of volatiles and sediments being eroded from Planum Boreum, which then may have been re-deposited as thick, circum-polar plains. Transition into low obliquity ∼5 myr ago may have led to progressive destabilization of these materials leading to collapse and pedestal crater formation. Our model does not contraindicate possible large-scale ponding of fluids in the northern lowlands, such as for example the formation of water and/or mud oceans. In fact, it provides a complementary mechanism involving large-scale groundwater discharges within the northern lowlands for the emplacement of fluids and sediments, which could have potentially contributed to the formation of these bodies. Nevertheless, our model would spatially restrict to surrounding parts of the northern plain either the distribution of the oceans or the zones within these where significant sedimentary accumulation would have taken place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号