首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   14篇
  国内免费   4篇
测绘学   3篇
大气科学   13篇
地球物理   37篇
地质学   48篇
海洋学   18篇
天文学   28篇
综合类   3篇
自然地理   23篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   15篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   11篇
  2012年   12篇
  2011年   13篇
  2010年   7篇
  2009年   12篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
101.
Low-lying coastal ecosystems along the northern Gulf of Mexico are already experiencing the effects of elevated salinity from sea-level rise and are predicted to face extreme events such as extended saltwater inundation, intense Atlantic hurricanes, and episodic drought. The ability of coastal plant communities to survive stresses from these events depends largely on how these communities respond to the stresses. Our understanding of how plant communities dominated by native vs. invasive plants respond to extreme events is limited. Utilizing controlled greenhouse experiments, we assessed the responses of floating aquatic macrophyte communities, dominated by native or invasive plants, of the coastal floodplains, Louisiana, USA, to a gradient of chronic salinity, mimicking sea-level rise; a gradient of acute salinity, mimicking hurricane storm surges; and a gradient of desiccation stress, mimicking episodic drought. We found that salinity and desiccation stress effects on plant communities depended on the degree of plant invasion; plant community cover decreased precipitously as severity of stress increased. Specifically, extreme salinity led to a decrease in plant cover of >?90% when communities were dominated by invasive plants, whereas increased desiccation stress led to decreased plant cover of 100% when communities were dominated by native species. At low to moderate salinity, invasive dominated plant communities performed better than native dominated. These responses to salinity and desiccation stress may drive large-scale shifts in plant community structure, including loss of species. Our results underscore the importance of evaluating plant community responses to environmental extremes to determine the potential for future effects on dynamics and functioning of low-lying coastal floodplain ecosystems experiencing effects of climate change.  相似文献   
102.
The eccentricities of the barium stars   总被引:3,自引:0,他引:3  
We investigate the eccentricities of barium (Ba  ii ) stars formed via a stellar wind accretion model. We carry out a series of Monte Carlo simulations using a rapid binary evolution algorithm, which incorporates full tidal evolution, mass loss and accretion, and nucleosynthesis and dredge-up on the thermally pulsing asymptotic giant branch. We follow the enhancement of barium in the envelope of the accreting main-sequence companion and dilution into its convective envelope once the star ascends the giant branch.
The observed eccentricities of Ba  ii stars are significantly smaller than those of an equivalent set of normal red giants but are nevertheless non-zero. We show that such a distribution of eccentricities is consistent with a wind accretion model for Ba  ii star production with weak viscous tidal dissipation in the convective envelopes of giant stars. We successfully model the distribution of orbital periods and the number of observed Ba  ii stars. The actual distribution of eccentricities is quite sensitive to the strength of the tides, so that we are able to confirm that this strength is close to, but less than, what is expected theoretically and found with alternative observational tests. Two systems – one very short-period but eccentric, and one long-period and highly eccentric – still lie outside the envelope of our models, and so require a more exotic formation mechanism. All our models, even those which were a good fit to the observed distributions, overproduced the number of high-period barium stars, a problem that could not be solved by some combination of the three parameters: tidal strength, tidal enhancement and wind accretion efficiency.  相似文献   
103.
Wind power is a renewable energy resource, that has relatively cheap installation costs and it is highly possible that will become the main energy resource in the near future. Wind power needs to be integrated efficiently into electricity grids, and to optimize the power dispatch, techniques to predict the level of wind power and the associated variability are critical. Ideally, one would like to obtain reliable probability density forecasts for the wind power distributions. We aim at contributing to the literature of wind power prediction by developing and analysing a spatio-temporal methodology for wind power production, that is tested on wind power data from Denmark. We use anisotropic spatio-temporal correlation models to account for the propagation of weather fronts, and a transformed latent Gaussian field model to accommodate the probability masses that occur in wind power distribution due to chains of zeros. We apply the model to generate multi-step ahead probability predictions for wind power generated at both locations where wind farms already exist but also to nearby locations.  相似文献   
104.
Upper Klamath Lake (UKL) is the source of the Klamath River that flows through southern Oregon and northern California. The UKL Basin provides water for 81,000+ ha (200,000+ acres) of irrigation on the U.S. Bureau of Reclamation Klamath Project located downstream of the UKL Basin. Irrigated agriculture also occurs along the tributaries to UKL. During 2013–2016, water rights calls resulted in various levels of curtailment of irrigation diversions from the tributaries to UKL. However, information on the extent of curtailment, how much irrigation water was saved, and its impact on the UKL is unknown. In this study, we combined Landsat-based actual evapotranspiration (ETa) data obtained from the Operational Simplified Surface Energy Balance model with gridded precipitation and U.S. Geological Survey station discharge data to evaluate the hydrologic impact of the curtailment program. Analysis was performed for 2004, 2006, 2008–2010 (base years), and 2013–2016 (target years) over irrigated areas above UKL. Our results indicate that the savings from the curtailment program over the June to September time period were highest during 2013 and declined in each of the following years. The total on-field water savings was approximately 60 hm3 in 2013 and 2014, 44 hm3 in 2015, and 32 hm3 in 2016 (1 hm3 = 10,000 m3 or 810.7 ac-ft). The instream water flow changes or extra water available were 92, 68, 45, and 26 hm3, respectively, for 2013, 2014, 2015, and 2016. Highest water savings came from pasture and wetlands. Alfalfa showed the most decline in water use among grain crops. The resulting extra water available from the curtailment contributed to a maximum of 19% of the lake inflows and 50% of the lake volume. The Landsat-based ETa and other remote sensing datasets used in this study can be used to monitor crop water use at the irrigation district scale and to quantify water savings as a result of land-water management changes.  相似文献   
105.
106.
107.
The Water Framework Directive (WFD) identifies marine angiosperms (seagrasses and saltmarshes) as one of the biological elements used to classify water body status. This paper concentrates on the saltmarsh classification tools currently under development in the UK and RoI by the Marine Plants Task Team (MPTT) of the UK Technical Advisory Group (UK TAG). Saltmarsh classification is presently focusing on habitat extent, zonation and species diversity in order to fulfil the requirements of the WFD normative definitions. One of the many issues is that the natural rates of erosion and/or accretion differ between locations - this spatial and temporal natural variation is difficult to quantify; the tools and reference conditions developed will need to take this into consideration. To accurately quantify the classification boundaries and natural variability has posed a number of challenges; possible solutions are identified in this paper. Novel future classifications may also include saltmarsh ecosystem functioning (e.g., as a marine fish nursery) which may be further developed in an integrated saltmarsh tool.  相似文献   
108.
Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to FeO charge transfers involving Fe3+ or Fe2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe3+ and Fe2+. The major Fe3+O absorption band occurs at shorter wavelengths (∼210-230 nm), and is more intense than the major Fe2+O absorption band (∼250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti4+O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe2+ or Fe3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe2+O bands in some plagioclase feldspars and pyroxenes), changes in Fe2+ content do not appear to cause variations in band position. In other minerals (e.g., olivine), changes in band positions are correlated with compositional and/or grain size variations, but this is likely due to increasing band saturation rather than compositional variations. Overall, we find that the UV spectral region is sensitive to different mineral properties than longer wavelength regions, and thus offers the potential to provide complementary capabilities and unique opportunities for planetary remote sensing.  相似文献   
109.
110.
Ever increasing and diverse use of the marine environment is leading to human-induced changes in marine life, habitats and landscapes, making necessary the development of marine policy that considers all members of the user community and addresses current, multiple, interacting uses. Taking a systems approach incorporating an understanding of The Ecosystem Approach, we integrate the DPSIR framework with ecosystem services and societal benefits, and the focus this gives allows us to create a specific framework for supporting decision making in the marine environment. Based on a linking of these three concepts, we present a set of basic postulates for the management of the marine environment and emphasise that these postulates should hold for marine management to be achieved. We illustrate these concepts using two case studies: the management of marine aggregates extraction in UK waters and the management of marine biodiversity at Flamborough Head, UK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号