首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2817篇
  免费   198篇
  国内免费   32篇
测绘学   84篇
大气科学   297篇
地球物理   836篇
地质学   1089篇
海洋学   236篇
天文学   358篇
综合类   16篇
自然地理   131篇
  2023年   12篇
  2022年   40篇
  2021年   79篇
  2020年   79篇
  2019年   65篇
  2018年   103篇
  2017年   118篇
  2016年   179篇
  2015年   135篇
  2014年   176篇
  2013年   251篇
  2012年   212篇
  2011年   173篇
  2010年   157篇
  2009年   132篇
  2008年   113篇
  2007年   74篇
  2006年   108篇
  2005年   71篇
  2004年   70篇
  2003年   61篇
  2002年   85篇
  2001年   65篇
  2000年   28篇
  1999年   23篇
  1998年   29篇
  1997年   24篇
  1996年   16篇
  1995年   36篇
  1994年   18篇
  1993年   12篇
  1992年   13篇
  1991年   22篇
  1990年   15篇
  1989年   13篇
  1987年   12篇
  1986年   11篇
  1985年   21篇
  1984年   18篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   8篇
  1979年   13篇
  1978年   7篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1969年   7篇
排序方式: 共有3047条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
125.
126.
127.
International Journal of Earth Sciences - The geometry and emplacement of the ~ 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive...  相似文献   
128.
International Journal of Earth Sciences - The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated...  相似文献   
129.
The ~?2-km-thick Panzhihua gabbroic-layered intrusion in SW China is unusual because it hosts a giant Fe–Ti oxide deposit in its lower zone. The deposit consists of laterally extensive net-textured and massive Fe–Ti oxide ore layers, the thickest of which is ~?60 m. To examine the magmatic processes that resulted in the Fe enrichment of parental high-Ti basaltic magma and the formation of thick, Fe–Ti oxide ore layers, we carried out a detailed study of melt inclusions in apatite from a ~?500-m-thick profile of apatite-bearing leucogabbro in the middle zone of the intrusion. The apatite-hosted melt inclusions are light to dark brown in color and appear as polygonal, rounded, oval and negative crystal shapes, which range from ~?5 to ~?50 µm in width and from ~?5 to ~?100 µm in length. They have highly variable compositions and show a large and continuous range of SiO2 and FeOt with contrasting end-members; one end-member being Fe-rich and Si-poor (40.2 wt% FeOt and 17.7 wt% SiO2) and the other being Si-rich and Fe-poor (74.0 wt% SiO2 and 1.20 wt% FeOt). This range in composition may be attributed to entrapment of the melt inclusions over a range of temperature and may reflect the presence of µm-scale and immiscible Fe-rich and Si-rich components in different proportions. Simulating results for the motion of Si-rich droplets within a crystal mush indicate that Si-rich droplets would be separated from Fe-rich melt and migrate upward due to density differences in the interstitial liquid when the magma unmixed. Migration of the Si-rich, immiscible liquid component from the interstitial liquid caused the remaining Fe-rich melt in the lower part to react with plagioclase primocrysts (An59–60), as evidenced by fine-grained lamellar intergrowth of An-rich plagioclase (An79–84)?+?clinopyroxene in the oxide gabbro of the lower zone. Therefore, magma unmixing within a crystal mush, combined with gravitationally driven loss of the Si-rich component, resulted in the formation of Fe-rich, melagabbro and major Fe–Ti oxide ores in the lower part and Si-rich, leucogabbro in the upper part of the intrusion.  相似文献   
130.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号