首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5023篇
  免费   215篇
  国内免费   44篇
测绘学   154篇
大气科学   490篇
地球物理   1116篇
地质学   1493篇
海洋学   485篇
天文学   996篇
综合类   7篇
自然地理   541篇
  2021年   60篇
  2020年   79篇
  2019年   83篇
  2018年   105篇
  2017年   106篇
  2016年   152篇
  2015年   128篇
  2014年   141篇
  2013年   317篇
  2012年   177篇
  2011年   258篇
  2010年   187篇
  2009年   267篇
  2008年   230篇
  2007年   239篇
  2006年   216篇
  2005年   187篇
  2004年   165篇
  2003年   161篇
  2002年   153篇
  2001年   112篇
  2000年   131篇
  1999年   97篇
  1998年   99篇
  1997年   70篇
  1996年   67篇
  1995年   69篇
  1994年   60篇
  1993年   52篇
  1992年   43篇
  1991年   52篇
  1990年   45篇
  1989年   61篇
  1988年   35篇
  1987年   59篇
  1986年   39篇
  1985年   70篇
  1984年   66篇
  1983年   64篇
  1982年   59篇
  1981年   64篇
  1980年   54篇
  1979年   44篇
  1978年   37篇
  1977年   44篇
  1976年   34篇
  1975年   41篇
  1974年   22篇
  1973年   25篇
  1972年   23篇
排序方式: 共有5282条查询结果,搜索用时 15 毫秒
91.
Textural isotopic and microfossil data from two gravity cores obtained in Saguenay Fjord, Quebec, suggest that a distinctive sandy clay bed was deposited as the result of a major landslide in the Saguenay River basin. Pb-210 dating of the cores indicate that the bed is of similar age to the magnitude 7 earthquake of February 5, 1663. The slide involved sensitive marine clays and may have occurred in two stages. Slide sediments carried into the Saguenay River channel were probably reworked and subsequently transported down the Fjord basin as two distinct cohesionless mass flows. Fine clay laminae that overlie the older mass flow bed record the modulation of depositional processes by tidal currents for several weeks after this event.  相似文献   
92.
This issue marks a change in the editorial team of the ICESJournal of Marine Science, in that we have bid farewell to ourformer Editor-in-Chief, Niels Daan, after six years of sterlingservice, and to our Elsevier Publishing Editor, Andrew Richford,after an even longer period of years. Both deserve credit fortheir energy and vision that has left us the legacy of a journalas widely read and cited as the ICES Journal now is, but theyleave a gap that will be a huge challenge for us to meet. However,in my new capacity as Editor-in-Chief and in Els Bosma's capacityas Elsevier's Publishing Editor, I  相似文献   
93.
Deep-sea benthic ecosystems are sustained largely by organic matter settling from the euphotic zone. These fluxes usually have a more or less well-defined seasonal component, often with two peaks, one in spring/early summer, the other later in the year. Long time-series datasets suggest that inter-annual variability in the intensity, timing and composition of flux maxima is normal. The settling material may form a deposit of “phytodetritus” on the deep-seafloor. These deposits, which are most common in temperate and high latitude regions, particularly the North Atlantic, evoke a response by the benthic biota. Much of our knowledge of these responses comes from a few time-series programmes, which suggest that the nature of the response varies in different oceanographic settings. In particular, there are contrasts between seasonal processes in oligotrophic, central oceanic areas and those along eutrophic continental margins. In the former, it is mainly “small organisms” (bacteria and protozoans) that respond to pulsed inputs. Initial responses are biochemical (e.g. secretion of bacterial exoenzymes) and any biomass increases are time lagged. Increased metabolic activity of small organisms probably leads to seasonal fluctuations in sediment community oxygen consumption, reported mainly in the North Pacific. Metazoan meiofauna are generally less responsive than protozoans (foraminifera), although seasonal increases in abundance and body size have been reported. Measurable population responses by macrofauna and megafauna are less common and confined largely to continental margins. In addition, seasonally synchronised reproduction and larval settlement occur in some larger animals, again mainly in continental margin settings. Although seasonal benthic responses to pulsed food inputs are apparently widespread on the ocean floor, they are not ubiquitous. Most deep-sea species are not seasonal breeders and there are probably large areas, particularly at abyssal depths, where biological process rates are fairly uniform over time. As with other aspects of deep-sea ecology, temporal processes cannot be encapsulated by a single paradigm. Further long time-series studies are needed to understand better the nature and extent of seasonality in deep-sea benthic ecosystems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
94.
The representer method was used by [Ngodock, H.E., Jacobs, G.A., Chen, M., 2006. The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: a comparison study using a nonlinear reduced gravity ocean model. Ocean Modelling 12, 378–400] in a comparison study with the ensemble Kalman filter and smoother involving a 1.5 nonlinear reduced gravity idealized ocean model simulating the Loop Current (LC) and the Loop Current eddies (LCE) in the Gulf of Mexico. It was reported that the representer method was more accurate than its ensemble counterparts, yet it had difficulties fitting the data in the last month of the 4-month assimilation window when the data density was significantly decreased. The authors attributed this failure to increased advective nonlinearities in the presence of an eddy shedding causing the tangent linear model (TLM) to become inaccurate. In a separate study [Ngodock, H.E., Smith, S.R., Jacobs, G.A., 2007. Cycling the representer algorithm for variational data assimilation with the Lorenz attractor. Monthly Weather Review 135 (2), 373–386] applied the cycling representer algorithm to the Lorenz attractor and demonstrated that the cycling solution was able to accurately fit the data within each cycle and beyond the range of accuracy of the TLM, once adjustments were made in the early cycles, thus overcoming the difficulties of the non-cycling solution. The cycling algorithm is used here in assimilation experiments with the nonlinear reduced gravity model. It is shown that the cycling solution overcomes the difficulties encountered by the non-cycling solution due to a limited time range of accuracy of the TLM. Thus, for variational assimilation applications where the TLM accuracy is limited in time, the cycling representer becomes a very powerful and attractive alternative, given that its computational cost is significantly lower than that of the non-cycling algorithm.  相似文献   
95.
The formation of incised valleys on continental shelves is generally attributed to fluvial erosion under low sea level conditions. However, there are exceptions. A multibeam sonar survey at the northern end of Australia's Great Barrier Reef, adjacent to the southern edge of the Gulf of Papua, mapped a shelf valley system up to 220 m deep that extends for more than 90 km across the continental shelf. This is the deepest shelf valley yet found in the Great Barrier Reef and is well below the maximum depth of fluvial incision that could have occurred under a − 120 m, eustatic sea level low-stand, as what occurred on this margin during the last ice age. These valleys appear to have formed by a combination of reef growth and tidal current scour, probably in relation to a sea level at around 30–50 m below its present position.

Tidally incised depressions in the valley floor exhibit closed bathymetric contours at both ends. Valley floor sediments are mainly calcareous muddy, gravelly sand on the middle shelf, giving way to well-sorted, gravely sand containing a large relict fraction on the outer shelf. The valley extends between broad platform reefs and framework coral growth, which accumulated through the late Quaternary, coincides with tidal current scour to produce steep-sided (locally vertical) valley walls. The deepest segments of the valley were probably the sites of lakes during the last ice age, when Torres Strait formed an emergent land-bridge between Australia and Papua New Guinea. Numerical modeling predicts that the strongest tidal currents occur over the deepest, outer-shelf segment of the valley when sea level is about 40–50 m below its present position. These results are consistent with a Pleistocene age and relict origin of the valley.

Based on these observations, we propose a new conceptual model for the formation of tidally incised shelf valleys. Tidal erosion on meso- to macro-tidal, rimmed carbonate shelves is enhanced during sea level rise and fall when a tidal, hydraulic pressure gradient is established between the shelf-lagoon and the adjacent ocean basin. Tidal flows attain a maximum, and channel incision is greatest, when a large hydraulic pressure gradient coincides with small channel cross sections. Our tidal-incision model may explain the observation of other workers, that sediment is exported from the Great Barrier Reef shelf to the adjacent ocean basins during intermediate (rather than last glacial maximum) low-stand, sea level positions. The model may apply to other rimmed shelves, both modern and ancient.  相似文献   

96.
Urban stormwater runoff could contribute to the deterioration of water quality of a receiving water body. In this research, field studies and laboratory experiments were conducted to assess the microbial contamination resulting from urban stormwater runoff into the Lake Pontchartrain estuary. Fecal coliform, Escherichia coli and enterococci were used as indicator organisms. The specific objectives of the research were to examine the distribution of the indicator organisms in different environmental elements (water column, suspended particles and sediment) and to further investigate the mechanisms related to their fate. Results of the research indicated satisfactory water quality at the study sites during dry weather periods. However, a significant increase was observed in the concentrations of the indicator organisms in the water columns and sediment at specific study sites following a given stormwater event. Three to seven days were needed for the elevated indicator organisms to return back to their background levels in the water column and sediment, respectively. The mechanism of sedimentation contributed to a reduction in the microbial concentration in the water column, as the indicator organisms were found to attach to the suspended particles in the stormwater. The percentage of fecal coliform, E. coli and enterococci attached to the suspended particles was found to be within the range of 9.8–27.5%, 21.8–30.4%, and 8.4–11.5% of the total indicator organisms in the stormwater loaded into the estuary, respectively. About 75–80% of the total indicator organisms remained free-floating for some distance in the water column before dying off.  相似文献   
97.
In this paper, we derive an unsteady refraction–diffraction model for narrowbanded water waves for use in computing coupled wave–current motion in the nearshore. The end result is a variable coefficient, nonlinear Schrödinger-type wave driver (describing the envelope of narrow-banded incident waves) coupled to forced nonlinear shallow water equations (describing steady or unsteady mean flows driven by the short-wave field). Comparisons with experimental data show that good accuracy can be obtained for cases of nonbreaking wave transformation. Numerical simulations show that the interaction of wave groups with longshore topographic nonuniformities generates strong edge wave resonances, providing a generating mechanism for low-order edge waves.  相似文献   
98.
Transport of warm, nutrient-rich Circumpolar Deep Water (CDW) onto Antarctic continental shelves and coastal seas has important effects on physical and biological processes. The present study investigates the locations of this transport and its dynamics in the Ross Sea with a high-resolution three-dimensional numerical model. The model circulation is forced by daily wind stress along with heat and salt fluxes calculated from atmospheric climatologies by bulk formulae. All surface fluxes are modified by an imposed climatological ice cover. Waters under the Ross Ice Shelf are not included explicitly, but their effect on temperature and salinity is imposed in a buffer zone at the southern end of the model domain. A simple nutrient uptake is calculated based on the climatological chlorophyll distribution and Monod uptake kinetics.Model circulation is strongly affected by bottom topography, due to weak stratification, and agrees with schematics of the general flow and long-term current measurements except near the southern boundary. The sea-surface temperature is similar to satellite estimates except that the warmest simulated temperatures are slightly higher than observations. There is a significant correlation between the curvature of the shelf break and the transport across the shelf break. A momentum term balance shows that momentum advection helps to force flow across the shelf break in specific locations due to the curvature of the bathymetry (that is, the isobaths curve in front of the flow). For the model to create a strong intrusion of CDW onto the shelf, it appears two mechanisms are necessary. First, CDW is driven onto the shelf at least partially due to momentum advection and the curvature of the shelf break; then, the general circulation on the shelf takes the CDW into the interior.  相似文献   
99.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   
100.
A comprehensive study of undisturbed, mostly silty clay samples, taken from large-diameter surface cores collected in the North Atlantic and its bordering seas, shows that measurement of the Atterberg limits, water content, specific gravity of grains and grain-size distribution can provide the basis for predicting many seabed geotechnical and geophysical properties which can lead to a quick assessment of environmental conditions. Thus, the sediment compression curve can be reconstructed, acoustic properties assessed, electrical and thermal resistivities deduced and an indication of the shearing forces, which have affected the sediment, inferred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号