首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   8篇
  国内免费   11篇
测绘学   6篇
大气科学   47篇
地球物理   52篇
地质学   85篇
海洋学   14篇
天文学   39篇
综合类   4篇
自然地理   14篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   11篇
  2018年   13篇
  2017年   7篇
  2016年   20篇
  2015年   15篇
  2014年   23篇
  2013年   27篇
  2012年   16篇
  2011年   10篇
  2010年   13篇
  2009年   14篇
  2008年   10篇
  2007年   8篇
  2006年   15篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
排序方式: 共有261条查询结果,搜索用时 218 毫秒
61.
Roderick Impey Murchison named the Permian Period in 1841 based on his work on Lower Permian marine sediments around the city of Perm’, on the west flank of the Ural Mountains. However, he had observed post-Carboniferous red beds earlier, around the town of Vyazniki, west of Moscow, lying above the classic Carboniferous limestones of the Moscow Basin. Murchison's notebooks and papers show that he and colleagues equivocated about the exact age of these red beds, whether latest Permian or early Triassic, but he always favoured the former view. So, his initial observation of the Vyazniki redbeds provided a marker for the top of the Permian and base of the Triassic in the European Russian platform.  相似文献   
62.
63.
64.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   
65.
66.
The article considers the long-term(1941–2018) transformation of the Krasnodar valley reservoir, the largest in the North Caucasus. The main functions of the Krasnodar reservoir are irrigation of rice systems and flood protection of land in the Krasnodar reservoir region and the Republic of Adygea. According to topographic maps, Landsat satellite images(1974–2018) and field observations(2016–2018), four stages of transformation of the floodplain reservoir are identified. The selected stages are characterized by both natural causes(the transformation of the filling deltas into the extended deltas, etc.) and man-made causes(runoff diversions in the delta areas, etc.). The key factor of transformation is the formation of deltas of rivers flowing into the reservoir. Each of the selected stages, against the background of a gradual reduction in the area and volume of the reservoir, is characterized by the peculiarities of the formation of river deltas with the formation of genetically homogeneous sections of delta regions. During the period of operation of the reservoir, the delta of the main Kuban River moved up to 32.4 km and took away an area of 35.4 km~2 of the reservoir. During the formation of the deltas of the Kuban and Belaya rivers, a bridge was formed on the Krasnodar reservoir. The evolution of the delta regions led to the division of the reservoir into two autonomous reservoirs. The total area of the delta regions was 85.9 km~2 by 2018, i.e., 21% of the initial area of the reservoir. The transformation of the Krasnodar reservoir leads to a decrease in its regulated volume and gradual degradation.  相似文献   
67.
Boriskino is a poorly studied CM chondrite with numerous millimeter‐ to centimeter‐scale clasts exhibiting sharp boundaries. Clast textures and mineralogies attest to diverse geological histories with various degrees of aqueous alteration. We conducted a petrographic, chemical, and isotopic study on each clast type of the breccia to investigate if there exists a genetic link between brecciation and aqueous alteration, and to determine the controlling parameter of the extent of alteration. Boriskino is dominated by CM2 clasts for which no specific petrographic type could be assigned based on the chemical compositions and modal abundances of constituents. One clast stands out and is identified as a CM1 lithology, owing to its lack of anhydrous silicates and its overall abundance of dolomite‐like carbonates and acicular iron sulfides. We observe that alteration phases near clast boundaries exhibit foliation features, suggesting that brecciation postdated aqueous alteration. We measured the O‐isotopic composition of Ca‐carbonates and dolomite‐like carbonates to determine their precipitation temperatures following the methodology of Verdier‐Paoletti et al. (2017). Both types of carbonates yield similar ranges of precipitation temperatures independent of clast lithology, ranging from ?13.9 ± 22.4 (2σ) to 166.5 ± 47.3 °C, precluding that temperature alone accounts for the differences between the CM1 and CM2 lithologies. Instead, we suggest that initial water/rock ratios of 0.75 and 0.61 for the CM1 and CM2 clasts, respectively, might control the extent of aqueous alteration. Based on these estimates, we suggest that Boriskino clasts originated from a single parent body with heterogeneous distribution of water either due to local differences in the material permeability or in the initial content of ice available. These conditions would have produced microenvironments with differing geochemical conditions thus leading to a range of degrees of aqueous alteration.  相似文献   
68.
We report variation of K-band infrared(IR) emission in the vicinity of the G025.65+1.05 water and methanol maser source. New observational data were obtained with the 2.5 m telescope at the Caucasian Mountain Observatory(CMO) of Moscow State University on 2017–09–21 during a strong water maser flare. We found that the IR source situated close to the maser position had decreased brightness in comparison to archive data. This source is associated with a massive young stellar object(MYSO) corresponding to the compact IR source IRAS 18316–0602(RAFGL 7009 S). A similar decrease in K-brightness of the IR source close to the maser position was observed in March 2011 when the water maser experienced a period of increased activity. The dips in MYSO brightness can be related to the maser flare phases. Maser flares that are concurrent with dips in the IR emission can be explained if the lower IR radiation field enables a more efficient sink for the pumping cycle by allowing IR photons to escape the maser region.  相似文献   
69.
A new set of low-resolution spectral and UBVJHKL-photometric observations of the symbiotic nova PU Vul is presented. The binary has been evolving after its symbiotic nova outburst in 1977 and now it is in the nebular stage. It is found that the third orbital cycle(after 1977) was characterized by great changes in associated light curves. Now, PU Vul exhibits a sine-wave shape in all the light curves(with an amplitude in the U band of about 0.7 mag), which is typical for symbiotic stars in the quiescent state. Brightness variability due to pulsations of the cool component is now clearly visible in the VRI light curves. The amplitude of the pulsations increases from 0.5 mag in the V band to 0.8 mag in the I band. These two types of variability, as well as a very slow change in the physical parameters of the hot component due to evolution after the outburst of 1977, influence the spectral energy distribution(SED)of the system. The variability of emission lines is highly complex. Only hydrogen line fluxes vary with orbital phase. An important feature of the third orbital cycle is the first emergence of the OVI, 6828  Raman scattering line. We determine the temperature of the hot component by means of the Zanstra method applied to the He II, 4686  line. Our estimate is about 150 000 K for the spectrum obtained near orbital maximum in 2014. The VO spectral index derived near pulsation minimum corresponds to M6 spectral class for the cool component of PU Vul.  相似文献   
70.
We investigated the khatyrkite–cupalite holotype sample, 1.2 × 0.5 mm across. It consists of khatyrkite (Cu,Zn)Al2, cupalite (Cu,Zn)Al, and interstitial material with approximate composition (Zn,Cu)Al3. All mineral phases of the holotype sample contain Zn and lack Fe that distinguishes them from khatyrkite and cupalite in the Khatyrka meteorite particles (Bindi et al. 2009 , 2011 , 2012 , 2015 ; MacPherson et al. 2013 ; Hollister et al. 2014 ). Neither highly fractionated natural systems nor geo‐ or cosmochemical processes capable of forming the holotype sample are known so far. The bulk chemistry and thermal history of khatyrkite–cupalite assemblage in the holotype sample hint for its possible industrial origin. Likewise, the aluminides in the Khatyrka meteorite particles may also be derived from industrial materials and mixed with extraterrestrial matter during gold prospecting in the Listvenitovy Stream valley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号