首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   16篇
  国内免费   20篇
测绘学   15篇
大气科学   42篇
地球物理   123篇
地质学   192篇
海洋学   78篇
天文学   68篇
综合类   4篇
自然地理   54篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   5篇
  2015年   16篇
  2014年   22篇
  2013年   23篇
  2012年   21篇
  2011年   23篇
  2010年   25篇
  2009年   17篇
  2008年   25篇
  2007年   19篇
  2006年   16篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   12篇
  1998年   8篇
  1997年   9篇
  1995年   8篇
  1994年   7篇
  1993年   10篇
  1992年   6篇
  1990年   7篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1982年   7篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1974年   4篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
  1934年   4篇
  1930年   4篇
  1929年   4篇
  1921年   4篇
  1920年   4篇
  1918年   4篇
排序方式: 共有576条查询结果,搜索用时 31 毫秒
101.
In this paper, we examined the peak flow distribution on a realization of networks obtained with stochastic network models. Three network models including the uniform model, the Scheidegger model, and the Gibbsian model were utilized to generate networks. The network efficiency in terms of drainage time is highest on the Scheidegger model, whereas it is lowest on the uniform model. The Gibbsian model covers both depending on the parameter value of β. The magnitude of the peak flow at the outlet itself is higher on the Scheidegger model compared to the uniform model. However, the results indicate that the maximum peak flows can be observed not just at the outlet but also other parts of the mainstream. The results show that the peak flow distribution on each stochastic model has a common multifractal spectrum. The minimum value of α, which is obtained in the limit of a sufficiently large q, is equal to the fractal dimension of a single river. The multifractal properties clearly show the difference among three stochastic network models and how they are related. Moreover, the results imply that the multifractal properties can be utilized to estimate the value of β for a given drainage network.  相似文献   
102.
103.
Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin.  相似文献   
104.
We report the crustal structure for two locations in Iraq estimated by joint inversion of P -wave receiver functions (RFs) and surface (Rayleigh) wave group velocity dispersion. RFs were computed from teleseismic recordings at two temporary broad-band seismic stations located in Mosul (MSL) in the Zagros Fold Belt and Baghdad (BHD) in the Mesopotamian Foredeep. Group velocity dispersion curves at the sites were derived from continental-scale tomography. The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. We observe a strong Ps Moho at BHD consistent with a sharp Moho discontinuity. However, at MSL we observe a weak Ps Moho suggesting a transitional Moho where crustal thickening is likely to be occurring in the deep crust. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD and agreeing well with the previous reports. Ignoring the sediments, the crystalline crustal velocities and thicknesses are remarkably similar at both stations. The similarity of crustal structure suggests that the crust of the northeastern proto-Arabian Platform was uniform before subsidence and deposition of the sediments in the Cenozoic. If crystalline crustal structure is uniform across the northern Arabian Platform then crustal thickness variations in the Zagros Fold Belt and Thrust Zone should reveal the history of deformation and crustal shortening in the Arabian–Eurasian collision zone and not reflect pre-existing crustal thickness variations in the Arabian Plate.  相似文献   
105.
106.
In the past two decades, optical properties of chromophoric dissolved organic matter (CDOM) in marine environments have been extensively studied. Many of these studies report CDOM properties for the offshore environment where this complex mixture of optically active compounds is strongly diluted. Nevertheless, autochthonous and allochthonous sources have been identified and sinks related to photodegradation and bacterial activity have been demonstrated. The calculation of the spectral slope of the CDOM absorption curve has been proven to be useful and is often reported. However, a rigorous uncertainty analysis of the slope calculation is rarely reported. In this paper, we propose a method to evaluate the uncertainty of CDOM spectral slope calculated between 270 and 400 nm, using both naturally sampled and artificial solutions. We use these results to study the ultra-oligotrophic waters of the Mediterranean Sea (central eastern basin), where little is known about CDOM spatial distribution. We show that dilutions of both artificial and natural samples produce a Gaussian distribution of spectral slopes, indicating that consistent values may be determined, with a typical uncertainty of ±0.0004 nm−1 when absorption at 300 nm was greater then 0.1 m−1 (0.1 m pathlength). Comparing the distribution of spectral slopes from central eastern basin samples to a Gaussian distribution, we show differences between measurements that were significantly different. These values allow us to distinguish possible sources (algal derived CDOM), sinks (e.g. photo-bleaching) at different depths. We propose a subdivision of CDOM compounds into refractory and semilabile/refractory pools and evaluate the CDOM spectral slope of algal derived CDOM released at or near deep chlorophyll maximum.  相似文献   
107.
Carbon capture and storage (CCS) methods, either sub-seabed or in ocean depths, introduces risk of CO2 leakage and subsequent interaction with the ecosystem. It is therefore important to obtain information on possible effects of CO2. In situ CO2 exposure experiments were carried out twice for 10 days during 2005 using a Benthic Chamber system at 400 m depth in Storfjorden, Norway. pCO2 in the water above the sediment in the chambers was controlled at approximately 500, 5000 and 20,000 μatm, respectively. This article describes the experiment and the results from measured the biological responses within the chamber sediments. The results show effects of elevated CO2 concentrations on biological processes such as increased nanobenthos density. Methane production and sulphate reduction was enhanced in the approximately 5000 μatm chamber.  相似文献   
108.
Inceptisols are developed on silt loam, loam, and sandy loam Indian mounds at the Keller Mound Group and Bluff Top Mound in northeastern Iowa. The mounds date to the Allamakee Phase of the Late Woodland Period (ca. 1650–1250 B.P.) and are built with fill obtained from the A, E, and upper B horizons of pre-existing soils (Alfisols). Differences in the morphologic and chemical characteristics of soils on different mounds are attributed to textural differences of the mounds' fill. Coarse-textured mound fill is pedogenically altered at a faster rate than fine-textured fill, but total carbon percentage of the A horizon attains a steady state faster in fine-textured mound fill. Total phosphorus content is used to determine from which horizons of pre-existing soils the specific layers of mound fill originated. Rates and pathways of pedogenesis in mound fill may not provide good analogues for the early stages of soil development in materials that have not undergone previous weathering and subsequent modification by humans. Nevertheless, mound soils are useful benchmarks for some pedologic studies since they provide time lines for evaluating minimum rates for development of argillic and albic horizons, as well as attainment of the Alfisol order.  相似文献   
109.
The speeds of historical cool-season extratropical cyclones along the U.S. east coast, hereafter East Coast Winter Storms (ECWS), occurring during the period from 1951 to 2006 were computed. Average storm speed was 13.8 ms−1 with stronger storms generally moving faster than weaker storms and faster storms forming during the midwinter months (December–March). There was no clear trend in ECWS speed during the time period, although considerable season-to-season variability was present. The monthly and seasonal variations in storm speed could not be attributed to the El Ni?o-Southern Oscillation or North Atlantic Oscillation (NAO) alone. However, the speed of ECWS was considerably slower when both El Ni?o and the negative phase of NAO occurred simultaneously. Characteristic patterns in the upper levels of the atmosphere, specifically 300 hPa zonal winds and 500 hPa geopotential heights, were present during periods when ECWS speeds were among the slowest (and separately fastest). For slow storm speed, these patterns also prevailed during months in which El Ni?o and negative NAO phase occurred. These patterns were also present during months with extended runs of high oceanic storm surge. This provides a qualitative link between the atmospheric conditions associated with slow storms and potentially high coastal storm surge impacts. Among the prime consequences of ECWS speed are extended periods of high storm surge, mainly due to slow-moving storms. The sustained high tidal levels often lead to substantial damage caused by coastal flooding, overwash, and beach erosion.  相似文献   
110.
In this first study of lignin geochemistry in the world’s longest river on an island, surface sediments were collected along the Kapuas River, three lakes in the upper river, a tributary in the lower river and a separate river during June-July 2007 and December 2007-January 2008. The samples were analyzed for lignin-derived phenols and bulk elemental and stable carbon isotope compositions. Λ values (the sum of eight lignin phenols, expressed as mg/100 mg organic carbon (OC)) ranged from 0.13 to 3.70. Ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ranged from 0.34 to 1.18 and 0.28 to 1.40, respectively, indicating the presence of non-woody angiosperm tissues. The high vanillic acid to vanillin (Ad/Al)v (0.71-2.01) and syringic acid to syringaldehyde (Ad/Al)s (0.72-2.12) ratios indicate highly degraded lignin materials. In the upper Kapuas River, highly degraded soil materials discharged from lands that were barren as a result of deforestation activities were detected in the locations directly in those vicinities. The middle Kapuas River showed rapid organic matter degradation, probably due to the presence of fresh terrestrial and phytoplankton organic matter fueling the biogeochemical cycling. The Kapuas Kecil River, one of the two branches in the lower reach of the Kapuas River, showed higher levels and diagenesis of sedimentary organic matter due to input from anthropogenic sources and increased marine organic matter near the mouth. This study shows that different stretches along the river exhibit different levels and composition of sedimentary organic matter, as well as different carbon dynamics, which is directly attributable to the varying landscapes and quality of organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号