首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   10篇
测绘学   3篇
大气科学   7篇
地球物理   33篇
地质学   35篇
海洋学   2篇
天文学   8篇
自然地理   5篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   9篇
  2013年   2篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2006年   3篇
  2004年   3篇
  1994年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
31.
Various regional flood frequency analysis procedures are used in hydrology to estimate hydrological variables at ungauged or partially gauged sites. Relatively few studies have been conducted to evaluate the accuracy of these procedures and estimate the error induced in regional flood frequency estimation models. The objective of this paper is to assess the overall error induced in the residual kriging (RK) regional flood frequency estimation model. The two main error sources in specific flood quantile estimation using RK are the error induced in the quantiles local estimation procedure and the error resulting from the regional quantile estimation process. Therefore, for an overall error assessment, the corresponding errors associated with these two steps must be quantified. Results show that the main source of error in RK is the error induced into the regional quantile estimation method. Results also indicate that the accuracy of the regional estimates increases with decreasing return periods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
32.
The aim of Land-use Suitability Analysis and Planning Problem (LSAPP) is to identify the most suitable parcels of land for future land-uses considering several conflicting criteria. LSAPP can be modeled using a variant of a well-known combinatorial optimization problem called Quadratic Assignment Problem (QAP). In this paper, a multi-objective mathematical model is developed for LSAPP based on QAP modeling. The large-size instances of the proposed multi-objective mathematical model are difficult to solve in a reasonable CPU time using exact algorithms. So, an efficient three-phase hybrid solution procedure is proposed. In the first phase, the compensatory objectives are integrated using Analytic Hierarchy Process (AHP) and Decision-Making Trial and Evaluation Laboratory. Then, based on the aforementioned suitability objective function and other spatial objectives and constraints, a multi-objective LSAPP is constructed. Finally, a hybrid multiple objective meta-heuristic algorithm is proposed to solve the LSAPP. The core of the proposed algorithm is based on Scatter Search while Tabu Search and Variable Neighborhood Search are also utilized. The proposed algorithm is equipped with the concepts of Pareto optimality and Veto Threshold, which improve its efficacy. The proposed algorithm is applied on a real LSAPP case study, in ‘Persian Gulf Knowledge Village’, wherein its performance is compared with a well-known evolutionary computation algorithm called Vector Evaluated Genetic Algorithm (VEGA) using comprehensive statistical analysis. A survey on time complexity of the proposed algorithm is also accomplished. The results show that MOSVNS is significantly superior to VEGA both in single and in multi-objective modes. Furthermore, analysis of time complexity of the proposed algorithm shows that it is of polynomial time and can be applied to significantly larger problems with multiple compensatory and non-compensatory objectives.  相似文献   
33.
The NE-oriented Dasht-e-Arjan graben is located 65 km west of Shiraz and has resulted from the active Kare-e-Bas fault segmentations. This extensional graben bounded by two fault system east-Arjan and west-Arjan to the Shahneshin and Salamati anticline. In these study using Landsat 7 ETM images with resolution 2.5 m and directional filtering in the four azimuths and semi-automatic technique for linear structure in the study area. Using the obtained data from extracted lineaments, the rose diagrams of the main strike lineaments are well confirm with field measurements of faults with N56° ± 4°E direction. The structural lineaments of the study area show that the Dasht-e-Arjan area is underlain by the limestone, sandstone, and marl. LANDSAT imagery of the area has been analyzed and interpreted in order to determine the lineament and groundwater quality across the area. The fracture is structurally controlled and mostly influences both the groundwater and surface water pollution and flow directions in the Dasht-e-Arjan. Using visual interpretation, determining the lineaments on the satellite image is very difficult and subjective, and it requires an experienced interpreter. In this study, the lineament analysis is undertaken to examine the orientation of the lineament, the relationship between lineaments and tectonic features and groundwater quality. Lineament density maps show that the lineament density is high around areas. Areas having high lineament density represent areas with relatively high groundwater pollution. Field observations agreed with the results from the analysis of the imagery.  相似文献   
34.
Spatial differences of Quaternary deformation and intensity of tectonic activity are assessed through a detailed quantitative geomorphic study of the fault‐generated mountain fronts and alluvial/fluvial systems around the Maharlou Lake Basin in the Zagros Fold–Thrust Belt of Iran. The Maharlou Lake Basin is defined as an approximately northwest–southeast trending, linear, topographic depression located in the central Zagros Mountains of Iran. The lake is located in a tectonically active area delineated by the Ghareh and Maharlou faults. Combined geomorphic and morphometric data reveal differences between the Ghareh and Maharlou mountain front faults indicating different levels of tectonic activity along each mountain front. Geomorphic indices show a relatively high degree of tectonic activity along the Ghareh Mountain Front in the southwest, in contrast with less tectonic activity along the Ahmadi Mountain Front northeast of the lake which is consistent with field evidence and seismotectonic data for the study area. A ramp valley tectonic setting is proposed to explain the tectonosedimentary evolution of the lake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
35.
Ground velocity records of the 20 May 2016 Petermann Ranges earthquake are used to calculate its centroid-moment-tensor in the 3?D heterogeneous Earth model AuSREM. The global-centroid-moment-tensor reported a depth of 12?km, which is the shallowest allowed depth in the algorithm. Solutions from other global and local agencies indicate that the event occurred within the top 12?km of the crust, but the locations vary laterally by up to 100?km. We perform a centroid-moment-tensor inversion through a spatiotemporal grid search in 3?D allowing for time shifts around the origin time. Our 3?D grid encompasses the locations of all proposed global solutions. The inversion produces an ensemble of solutions that constrain the depth, lateral location of the centroid, and strike, dip and rake of the fault. The centroid location stands out with a clear peak in the correlation between real and synthetic data for a depth of 1?km at longitude 129.8° and latitude –25.6°. A collection of acceptable solutions at this centroid location, produced by different time shifts, constrain the fault strike to be 304?±?4° or 138?±?1°. The two nodal planes have dip angles of 64?±?5° and 26?±?4° and rake angles of 96?±?2° and 77?±?5°, respectively. The southwest-dipping nodal plane with the dip angle of 64° could be seen as part of a near vertical splay fault system at the end of the Woodroffe Thrust. The other nodal plane could be interpreted as a conjugate fault rupturing perpendicular to the splay structure. We speculate that the latter is more likely, since the hypocentres reported by several agencies, including the Geoscience Australia, as well as the majority of aftershocks are all located to the northeast of our preferred centroid location. Our best estimate for the moment magnitude of this event is 5.9. The optimum centroid is located on the 20?km surface rupture caused by the earthquake. Given the estimated magnitude, the long surface rupture requires only ~4?km of rupture down dip, which is in agreement with the shallow centroid depth we obtained.  相似文献   
36.
37.
Theoretical and Applied Climatology - In this study, statistical and soft-computing methods are compared in forecasting groundwater levels under Shared Socioeconomic Pathways (SSPs) SSP1-2.6,...  相似文献   
38.
In this article, an approach using residual kriging (RK) in physiographical space is proposed for regional flood frequency analysis. The physiographical space is constructed using physiographical/climatic characteristics of gauging basins by means of canonical correlation analysis (CCA). This approach is a modified version of the original method, based on ordinary kriging (OK). It is intended to handle effectively any possible spatial trends within the hydrological variables over the physiographical space. In this approach, the trend is first quantified and removed from the hydrological variable by a quadratic spatial regression. OK is therefore applied to the regression residual values. The final estimated value of a specific quantile at an ungauged station is the sum of the spatial regression estimate and the kriged residual. To evaluate the performance of the proposed method, a cross‐validation procedure is applied. Results of the proposed method indicate that RK in CCA physiographical space leads to more efficient estimates of regional flood quantiles when compared to the original approach and to a straightforward regression‐based estimator. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
39.
This study presents single‐objective and multi‐objective particle swarm optimization (PSO) algorithms for automatic calibration of Hydrologic Engineering Center‐ Hydrologic Modeling Systems rainfall‐runoff model of Tamar Sub‐basin of Gorganroud River Basin in north of Iran. Three flood events were used for calibration and one for verification. Four performance criteria (objective functions) were considered in multi‐objective calibration where different combinations of objective functions were examined. For comparison purposes, a fuzzy set‐based approach was used to determine the best compromise solutions from the Pareto fronts obtained by multi‐objective PSO. The candidate parameter sets determined from different single‐objective and multi‐objective calibration scenarios were tested against the fourth event in the verification stage, where the initial abstraction parameters were recalibrated. A step‐by‐step screening procedure was used in this stage while evaluating and comparing the candidate parameter sets, which resulted in a few promising sets that performed well with respect to at least three of four performance criteria. The promising sets were all from the multi‐objective calibration scenarios which revealed the outperformance of the multi‐objective calibration on the single‐objective one. However, the results indicated that an increase of the number of objective functions did not necessarily lead to a better performance as the results of bi‐objective function calibration with a proper combination of objective functions performed as satisfactorily as those of triple‐objective function calibration. This is important because handling multi‐objective optimization with an increased number of objective functions is challenging especially from a computational point of view. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
40.
Physical characteristics of naturally formed convective vortices in the Phoenix Mars lander environment have been investigated on a relatively hot summer Martian arctic day. For this, the NCAR LES has been adapted and developed to conduct three micro-scale simulations of the Martian Convective Boundary Layer (CBL), in situations with and without geostrophic wind, and atmospheric radiative flux divergence. Time series analysis of the vortices’ properties is discussed. The study confirms the decrease of vortex populations in windy conditions and also illustrates that intense but small vortices are expected to be observed in higher geostrophic wind situations. This may lead to more dust migration rather than dust devil formation on windy days. The background (geostrophic) wind causes the vortices to become less cyclostrophically balanced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号