首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   2篇
大气科学   7篇
地球物理   13篇
地质学   30篇
海洋学   4篇
天文学   16篇
自然地理   12篇
  2024年   1篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2014年   2篇
  2013年   12篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
81.
Extraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment-dispersed extraterrestrial chrome-spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre-LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment-dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy-based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome-spinel from other time windows.  相似文献   
82.
Chrome-spinel grains from the fossil ungrouped achondrite Österplana 065 (Öst 065) recovered from Middle Ordovician limestone in Sweden were studied using Raman spectroscopy and TEM. All the studied chrome-spinel grains have a high density of planar fractures and planar features, not seen in chromites from the other L chondritic Ordovician fossil meteorites. Raman spectra of the host chrome-spinel grain and its planar features are similar and no signatures of high-pressure phases of chromite were found. The planar features occur along planar fractures, are enriched in ZnO, and are most probably produced due to enhanced leaching during terrestrial weathering in the marine sediment. Dislocation densities within two FIB sections prepared from two chrome-spinel grains from Öst 065 are similar to the dislocation densities found within chromite grains from the matrix of Tenham L6 chondrite. Using this observation and taking into account the presence of significant fracturing in all the grains, we conclude that the Öst 065 chrome-spinel grains were subjected to moderate to very strong shock corresponding to shock stages of S4–S6. This makes Öst 065 fossil achondrite the highest shocked fossil meteorite studied so far. This is consistent with the hypothesis that Öst 065 is a piece of the impactor that led to the L chondrite parent body breakup.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号