首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   13篇
  国内免费   6篇
测绘学   4篇
大气科学   13篇
地球物理   53篇
地质学   51篇
海洋学   66篇
天文学   3篇
综合类   3篇
自然地理   2篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   16篇
  2017年   11篇
  2016年   21篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有195条查询结果,搜索用时 31 毫秒
161.
This study presents time‐varying suspended sediment‐discharge rating curves to model suspended‐sediment concentrations (SSCs) under alternative climate scenarios. The proposed models account for hysteresis at multiple time scales, with particular attention given to systematic shifts in sediment transport following large floods (long‐term hysteresis). A series of nested formulations are tested to evaluate the elements embedded in the proposed models in a case study watershed that supplies drinking water to New York City. To maximize available data for model development, a dynamic regression model is used to estimate SSC based on denser records of turbidity, where the parameters of this regression are allowed to vary over time to account for potential changes in the turbidity‐SSC relationship. After validating the proposed rating curves, we compare simulations of SSC among a subset of models in a climate change impact assessment using an ensemble of flow simulations generated using a stochastic weather generator and hydrologic model. We also examine SSC estimates under synthetic floods generated using a peaks‐over‐threshold model. Our results indicate that estimates of extreme SSC under new climate and hydrologic scenarios can vary widely depending on the selected model and may be significantly underestimated if long‐term hysteresis is ignored when simulating impacts under sequences of large storm event. Based on the climate change scenarios explored here, average annual maximum SSC could increase by as much as 2.45 times over historical values.  相似文献   
162.
Detailed diatom records within core sediments from Maeho Lagoon along the Eastern coast of South Korea revealed that the ecological dynamics of the lagoon during the Holocene were associated with relative sea level and regional precipitation. Accelerator mass spectrometry (AMS) 14C dating indicates that sediment accumulation began prior to 8300 cal. year BP, and that the lagoon formed around 8000 cal. year BP. The salinity level of the lagoon increased until 5000 cal. year BP, and then decreased. Long‐term trends in salinity were dependent upon changes in sea level: periods of high salinity in the lagoon were generally coincident with periods of high sea levels along the east coasts of Korea and Japan. On the other hand, multicentennial‐scale fluctuations in diatom assemblages and magnetic susceptibility (MS) suggest that a 400 year fluctuation in salinity was regulated by changes in precipitation in the area of this lagoon. Changes in the westerly jet stream, controlled by variation in solar irradiance, had an important influence on precipitation volume in South Korea, suggesting that the patterns of the westerly jet stream fluctuate on a 400 year cycle.  相似文献   
163.
Ocean Science Journal - Anatomical, histological, and histochemical investigations on the olfactory organ of the great blue spotted mudskipper Boleophthalmus pectinirostris were conducted using a...  相似文献   
164.
Recently, a mesh-size insensitive structural stress definition (Battelle structural stress method) has been proposed. This method gives a stress state at a weld toe with a relatively coarse mesh, such as up to 2t (t=plate thickness) or irregular mesh shapes. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of a weld toe. In this present study, a fatigue strength assessment was carried out for a side shell connection of a container vessel using both the hot spot stress and the structural stress methods. A consistent approach to computing extrapolated hot spot stress for design purposes based on converged hot spot stresses is described and current fatigue guidance is evaluated. Fatigue strength predicted by the two methods, i.e. hot spot stress and structural stress approaches, at hot spot locations of a typical ship structure are compared and discussed.  相似文献   
165.
166.
The compression index is a one of the important soil parameters that is essential to geotechnical designs. As the determination of the compression index from consolidation tests is relatively time-consuming, empirical formulas based on soil parameters can be useful. Over the decades, a number of empirical formulas have been proposed to relate the compressibility to other soil parameters, such as the natural water content, liquid limit, plasticity index, specific gravity, and others. Each of the existing empirical formulas yields good results for a particular test set, but cannot accurately or reliably predict the compression index from various test sets. In this study, an alternative approach, an artificial neural network (ANN) model, is proposed to estimate the compression index with numerous consolidation test sets. The compression index was modeled as a function of seven variables including the natural water content, liquid limit, plastic index, specific gravity, and soil types. Nine hundred and forty-seven consolidation tests for soils sampled at 67 construction sites in the Republic of Korea were used for the training and testing of the ANN model. The predicted results showed that the neural network could provide a better performance than the empirical formulas.  相似文献   
167.
Surface roughness of rock discontinuities is an important factor that determines the strength characteristics of rock mass. Joint roughness coefficient (JRC), which is typically measured by means of Barton’s combs in the field, is widely used to describe the joint roughness. However, this traditional method of measurement can be rather subjective, labor-intensive and time consuming. In contrast, photogrammetry can provide an alternative method to obtain relatively simple and fast measurements of JRC based on high resolution 3D models. However, the reliability of such measurements still remains an issue as the results from photogrammetry can be affected by the quality of images. This study seeks to clarify whether photogrammetry can produce accurate measurements of JRC that can be used to assess the stability of slopes. A rock slope with a recent wedge failure in the Gold Coast area, Australia was selected for this purpose, and three different methods such as manual measurements, photogrammetry, and tilt tests were employed to determine the JRC. The obtained results showed some discrepancy in the values of JRC obtained from these three different measurements. In particular, the JRC obtained using the Barton’s comb had slightly higher values compared to those determined through the photogrammetry method while the tilt test results tended to yield overestimated values of JRC. Computer analysis using Universal Distinct Element Code was also performed to study the effect of JRC variation on the slope stability. It was found that an increase in the JRC led to an increase in the safety factor of the slope.  相似文献   
168.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   
169.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   
170.
Among the seagrasses that occur along the coast of Korea, Zostera asiatica inhabits the deepest depth; however, to date, there is limited information on its ecology. This study presents the first quantitative data on the seasonal growth dynamics of Z. asiatica in Korea. We measured seasonal growth and morphological characteristics, as well as environmental factors, including underwater irradiance, water temperature, salinity and nutrient concentrations of the water column and sediment pore water, bimonthly from July 2012 to May 2015. Underwater irradiance showed clear seasonal trends, increasing in the spring and summer and decreasing in the fall and winter, ranging from 2.4 ± 0.2 mol photons m-2 d-1 in November 2012 to 12.8 ± 1.3 mol photons m-2 d-1 in July 2014. Water temperature also followed a strong seasonal trend similar to underwater irradiance, ranging from 9.8 ± 0.1°C in January 2013 to 20.5 ± 0.2°C in September 2013. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variations. Shoot density, biomass, leaf productivity, and morphological characteristics of Z. asiatica exhibited significant seasonal variations: maximum values of these variables occurred in summer, and the minima were recorded in winter. Total shoot density was highest (218.8 ± 18.8 shoots m-2) in July 2012 and lowest (106.3 ± 6.3 shoots m-2) in January 2013. Total biomass ranged from 182.6 ± 16.9 g dry weight (DW) m-2 in January 2015 to 310.9 ± 6.4 g DW m-2 in July 2014.Areal leaf production was highest (4.9 ± 0.0 g DW m-2 d-1) in July 2012 and lowest (1.4 ± 0.2 g DW m-2 d-1) in January 2013. The optimum water temperature for the growth of Z. asiatica was between 16-19°C. Growth of Z. asiatica was more strongly correlated with underwater irradiance than water temperature, suggesting that light is the most important factor determining seasonality of Z. asiatica at the study site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号