首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   18篇
  国内免费   6篇
测绘学   9篇
大气科学   21篇
地球物理   120篇
地质学   139篇
海洋学   43篇
天文学   130篇
自然地理   32篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   13篇
  2018年   19篇
  2017年   13篇
  2016年   23篇
  2015年   17篇
  2014年   16篇
  2013年   28篇
  2012年   17篇
  2011年   27篇
  2010年   21篇
  2009年   26篇
  2008年   20篇
  2007年   32篇
  2006年   27篇
  2005年   12篇
  2004年   17篇
  2003年   12篇
  2002年   18篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   5篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1976年   4篇
  1975年   4篇
  1974年   1篇
  1973年   4篇
  1972年   3篇
  1971年   1篇
  1970年   3篇
  1969年   3篇
  1966年   1篇
  1957年   1篇
排序方式: 共有494条查询结果,搜索用时 78 毫秒
71.
Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave‐induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low‐ and high‐frequency limits. This allows us to quantify frequency‐dependent anisotropy due to the wave‐induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi‐P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny‐shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P‐wave and SV‐wave results in anisotropy due to the non‐vanishing excess tangential compliance.  相似文献   
72.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   
73.
The town of Zafferana Etnea, located on the southeastern slope of Mt. Etna volcano (Italy), has been repeatedly threatened by lava flows in recent centuries. The last serious threat occurred during the 1991–1993 eruption, when the lava front came to a halt only 1.7 km from the centre of town. Morphostructural data derived from light detection and ranging (LiDAR) surveys carried out on Etna in 2005 have enabled us to evaluate the risk of lava invasion in a section (16 km2) of the Zafferana Etnea territory. Qualitative and quantitative results are obtained combining the information derived from LiDAR analysis with geological, morphological and structural data using geographic information systems technology (GIS). The study quantifies in unprecedented detail the areal extent and volume of forested and urban areas and its degree of exposure to different levels of hazard from future lava invasion. Nearly 52% of the urban texture fall into areas of moderate to high risk from lava invasion. Future land use planning should take these findings into account and promote new development preferentially in areas of lower risk.  相似文献   
74.
Field studies performed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO RAS), Black Sea hydrophysical polygon in 2012 are illustrated. The variations in the vertical distribution of the hydrophysical characteristics (water temperature, salinity, and density, as well as current velocity) in the upper 200-m layer of the Black Sea above the continental slope in the cold season, obtained using an Aqualog autonomous profiler on a moored buoy station, have been analyzed. It has been established that the position of the permanent pycno-halocline and the hydrosulphuric zone upper boundary intensively oscillate with a characteristic period of 5–10 days. These oscillations cause short-period variations in the thickness of the oxigenated layer by 20–40 m, which reaches one-third of the total thickness of the layer. Measurements performed with autonomous stations (bottom ADCP, thermochain) at the experimental subsatellite polygon in the Gelendzhik coastal zone, as well as meteorological, ship, and satellite data obtained during the catastrophic rains and flooding on July 6–7, 2012, and afterward, have been simultaneously analyzed. It has been established that a catastrophic flow of turbid fresh water into the sea caused the formation of a belt of freshened (by 1.0–2.7 psu) less dense water with a high suspension concentration on the shelf and the upper continental slope. This water formed a quasi-geostrophic northwestward along-shore current, the velocity of which reached 40–50 cm/s. Therefore, the freshened and turbid water mostly escaped from the Gelendzhik region northwestward for two days after the flood, and the remaining water became free of suspension owing to its settlement during approximately the same period. The fields of the current velocity and suspension concentration in a submesoscale cyclonic eddy, identified on the satellite image, were measured at the hydrophysical polygon. It has been established that a high (when compared to the background values) suspension concentration in the surface-water layer in an eddy is related to intense upwelling at the eddy center and the rising of suspension (apparently phytoplankton) from the thermocline layer, where the suspension concentration is maximal.  相似文献   
75.

The aftershock processes that occurred in 1990–2008 on the Kamchatka Peninsula and in the adjacent water area are numerically modeled with the aim of forecasting the aftershock activity. The aftershocks are identified by the Molchan-Dmitrieva algorithm followed by the analysis of spatiotemporal distribution of the earthquakes, which gives the final aftershock sequences. The simulations are based on the relaxation and triggering models of the aftershock processes. The studied models adequately describe and reliably simulate the temporal behavior of the aftershock sequences. An attempt is made to forecast the aftershock processes in Kamchatka using the ETAS model. It is shown that forecasting based on the data observed during the preceding time intervals is quite accurate. This approach can be applied in the centers of seismological monitoring for estimating the aftershock activity within the first days after a strong earthquake.

  相似文献   
76.
Doklady Earth Sciences - We analyzed long-term satellite geodesic observations after the Simushir earthquakes of 2006–2007. Application of a key model of the structure of the island arc...  相似文献   
77.
Doklady Earth Sciences - The interpretation of multiannual satellite geodetic observations after the 2010 Maule earthquake is given on the basis of the keyboard concept of the subduction region...  相似文献   
78.
The results of the selection of a model of the deep density distribution in the lithosphere of Central and Southern Asia, which explains the previously revealed dependence of the free mantle surface depth on the thickness of the crust [Artemjev, 1975], are described. It is shown that this dependence can be caused by variations in the mantle’s density with depth. Models of the continental and oceanic mantles with an increase in the linear density over depth are selected for the region of Asia. The level of the free surface depth in the oceanic mantle is higher than in the continental mantle. The observed dependence on the crustal thickness can also be used for determining nonlinear density variations with depth under the assumption that lateral density variations in this dependence are of a random character.  相似文献   
79.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号