首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   18篇
  国内免费   6篇
测绘学   6篇
大气科学   20篇
地球物理   86篇
地质学   96篇
海洋学   25篇
天文学   95篇
自然地理   32篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   20篇
  2012年   12篇
  2011年   21篇
  2010年   18篇
  2009年   21篇
  2008年   13篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有360条查询结果,搜索用时 78 毫秒
141.
Post‐Late Paleozoic Collisional Framework of Southern Great Altai   总被引:1,自引:0,他引:1  
We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.  相似文献   
142.
We derived the velocity and attenuation of a generalized Stoneley wave being a symmetric trapped mode of a layer filled with a Newtonian fluid and embedded into either a poroelastic or a purely elastic rock. The dispersion relation corresponding to a linearized Navier–Stokes equation in a fracture coupling to either Biot or elasticity equations in the rock via proper boundary conditions was rigorously derived. A cubic equation for wavenumber was found that provides a rather precise analytical approximation of the full dispersion relation, in the frequency range of 10?3 Hz to 103 Hz and for layer width of less than 10 cm and fluid viscosity below 0.1 Pa· s [100 cP]. We compared our results to earlier results addressing viscous fluid in either porous rocks with a rigid matrix or in a purely elastic rock, and our formulae are found to better match the numerical solution, especially regarding attenuation. The computed attenuation was used to demonstrate detectability of fracture tip reflections at wellbore, for a range of fracture lengths and apertures, pulse frequencies, and fluid viscosity.  相似文献   
143.
Mountain building and landscape evolution are controlled by interactions between river dynamics and tectonic forces. Such interactions have been extensively studied, however a quantitative evaluation of tectonic/geomorphic feedbacks, which is imperative for understanding sediments routing within orogens and fold‐and‐thrust belts, remains to be undertaken. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one, or several, folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. Using examples from the Zagros Fold Belt (ZFB), we show that drainage patterns can be linked to the non‐dimensional incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm yr?1 and low incision ratios (?10 < R < 10). Intermediate drainage networks are obtained for uplift rates up to 2 mm yr?1 and large incision ratios (R > 20). Parallel drainage networks and the formation of sedimentary basins occur for large values of incision ratio (R > 20) and uplift rates between 1 and 2 mm yr?1. These results have implications for predicting the distribution of sediment depocenters in fold‐and‐thrust belts, which can be of direct economic interest for hydrocarbon exploration. They also put better constraints on the fluvial and geomorphic responses to fold growth induced by crustal‐scale tectonics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
144.
Changes in land use and land cover are major drivers of hydrological alteration in the tropical Andes. However, quantifying their impacts is fraught with difficulties because of the extreme diversity in meteorological boundary conditions, which contrasts strongly with the lack of knowledge about local hydrological processes. Although local studies have reduced data scarcity in certain regions, the complexity of the tropical Andes poses a big challenge to regional hydrological prediction. This study analyses data generated from a participatory monitoring network of 25 headwater catchments covering three of the major Andean biomes (páramo, jalca and puna) and links their hydrological responses to main types of human interventions (cultivation, afforestation and grazing). A paired catchment setup was implemented to evaluate the impacts of change using a ‘trading space‐for‐time’ approach. Catchments were selected based on regional representativeness and contrasting land use types. Precipitation and discharge have been monitored and analysed at high temporal resolution for a time period between 1 and 5 years. The observed catchment responses clearly reflect the extraordinarily wide spectrum of hydrological processes of the tropical Andes. They range from perennially humid páramos in Ecuador and northern Peru with extremely large specific discharge and baseflows, to highly seasonal, flashy catchments in the drier punas of southern Peru and Bolivia. The impacts of land use are similarly diverse and their magnitudes are a function of catchment properties, original and replacement vegetation and management type. Cultivation and afforestation consistently affect the entire range of discharges, particularly low flows. The impacts of grazing are more variable but have the largest effect on the catchment hydrological regulation. Overall, anthropogenic interventions result in increased streamflow variability and significant reductions in catchment regulation capacity and water yield, irrespective of the hydrological properties of the original biome. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   
145.
The aim of this study was to investigate the effects of supercritical CO2 (scCO2) injection on the elastic and anelastic properties of sandstone at seismic and ultrasonic frequencies. We present the results of the low‐frequency and ultrasonic experiments conducted on water‐saturated sandstone (Donnybrook, Western Australia) flooded with scCO2. The sandstone was cut in the direction perpendicular to a formation bedding plane and tested in a Hoek triaxial pressure cell. During the experiments with scCO2, the low‐frequency and ultrasonic systems and the pump dispensing scCO2 were held at a temperature of 42°C. The elastic parameters obtained for the sandstone with scCO2 at seismic (0.1 Hz–100 Hz) and ultrasonic (~0.5 MHz) frequencies are very close to those for the dry rock. The extensional attenuation was also measured at seismic frequencies for the dry, water‐saturated, and scCO2‐injected sandstones. The applicability of Gassmann's fluid substitution theory to obtained results was also tested during the experiments.  相似文献   
146.
The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27–May 2, 2010 and Costeau-6: January 23–January 27, 2011).  相似文献   
147.
Hard rock seismic exploration normally has to deal with rather complex geological environments. These types of environments are usually characterized by a large number of local heterogeneity (e.g., faults, fracture zones, and steeply dipping interfaces). The seismic data from such environments often have a poor signal‐to‐noise ratio because of the complexity of hard rock geology. To be able to obtain reliable images of subsurface structures in such geological conditions, processing algorithms that are capable of handling seismic data with a low signal‐to‐noise ratio are required for a reflection seismic exploration. In this paper, we describe a modification of the 3D Kirchhoff post‐stack migration algorithm that utilizes coherency attributes obtained by the diffraction imaging algorithm in 3D to steer the main Kirchhoff summation. The application to a 3D synthetic model shows the stability of the presented steered migration to the presence of high level of the random noise. A test on the 3D seismic volume, acquired on a mine site located in Western Australia, reveals the capability of the approach to image steep and sharp objects such as fracture and fault zones and lateral heterogeneity.  相似文献   
148.
Although most rocks are complex multi‐mineralic aggregates, quantitative interpretation workflows usually ignore this complexity and employ Gassmann equation and effective stress laws that assume a micro‐homogeneous (mono‐mineralic) rock. Even though the Gassmann theory and effective stress concepts have been generalized to micro‐inhomogeneous rocks, they are seldom if at all used in practice because they require a greater number of parameters, which are difficult to measure or infer from data. Furthermore, the magnitude of the effect of micro‐heterogeneity on fluid substitution and on effective stress coefficients is poorly understood. In particular, it is an open question whether deviations of the experimentally measurements of the effective stress coefficients for drained and undrained elastic moduli from theoretical predictions can be explained by the effect of micro‐heterogeneity. In an attempt to bridge this gap, we consider an idealized model of a micro‐inhomogeneous medium: a Hashin assemblage of double spherical shells. Each shell consists of a spherical pore surrounded by two concentric spherical layers of two different isotropic minerals. By analyzing the exact solution of this problem, we show that the results are exactly consistent with the equations of Brown and Korringa (which represent an extension of Gassmann's equation to micro‐inhomogeneous media). We also show that the effective stress coefficients for bulk volume α, for porosity n? and for drained and undrained moduli are quite sensitive to the degree of heterogeneity (contrast between the moduli of the two mineral components). For instance, while for micro‐homogeneous rocks the theory gives n? = 1, for strongly micro‐inhomogenous rocks, n? may span a range of values from –∞ to ∞ (depending on the contrast between moduli of inner and outer shells). Furthermore, the effective stress coefficient for pore volume (Biot–Willis coefficient) α can be smaller than the porosity ?. Further studies are required to understand the applicability of the results to realistic rock geometries.  相似文献   
149.
The quasi-normal scale elimination (QNSE) is an analytical spectral theory of turbulence based upon a successive ensemble averaging of the velocity and temperature modes over the smallest scales of motion and calculating corresponding eddy viscosity and eddy diffusivity. By extending the process of successive ensemble averaging to the turbulence macroscale one eliminates all fluctuating scales and arrives at models analogous to the conventional Reynolds stress closures. The scale dependency embedded in the QNSE method reflects contributions from different processes on different scales. Two of the most important processes in stably stratified turbulence, internal wave propagation and flow anisotropization, are explicitly accounted for in the QNSE formalism. For relatively weak stratification, the theory becomes amenable to analytical processing revealing just how increasing stratification modifies the flow field via growing anisotropy and gravity wave radiation. The QNSE theory yields the dispersion relation for internal waves in the presence of turbulence and provides a theoretical reasoning for the Gargett et al. (J Phys Oceanogr 11:1258–1271, 1981) scaling of the vertical shear spectrum. In addition, it shows that the internal wave breaking and flow anisotropization void the notion of the critical Richardson number at which turbulence is fully suppressed. The isopycnal and diapycnal viscosities and diffusivities can be expressed in the form of the Richardson diffusion laws thus providing a theoretical framework for the Okubo dispersion diagrams. Transitions in the spectral slopes can be associated with the turbulence- and wave-dominated ranges and have direct implications for the transport processes. We show that only quasi-isotropic, turbulence-dominated scales contribute to the diapycnal diffusivity. On larger, buoyancy dominated scales, the diapycnal diffusivity becomes scale independent. This result underscores the well-known fact that waves can only transfer momentum but not a scalar and sheds a new light upon the Ellison–Britter–Osborn mixing model. It also provides a general framework for separation of the effects of turbulence and waves even if they act on the same spatial and temporal scales. The QNSE theory-based turbulence models have been tested in various applications and demonstrated reliable performance. It is suggested that these models present a viable alternative to conventional Reynolds stress closures.  相似文献   
150.
Along the deformation front of the North Ecuador–South Colombia (NESC) margin, both surface heat flow and trench sediment thickness show prominent along-strike variations, indicating significant spatial variations in sedimentation rate. Investigating these variations helps us address the important question of how trench sedimentation influences the temperature distribution along the interplate contact and the extent of the megathrust seismogenic zone. We examine this issue by analysing 1/ a new dense reflection data set, 2/ pre-stack depth migration of selected multichannel seismic reflection lines, 3/ numerous newly-identified bottom-simulating reflectors and 4/ the first heat probe measurements in the region. We develop thermal models that include sediment deposition and compaction on the cooling oceanic plate as well as viscous corner flow in the mantle wedge. We estimate that the temperature from 60–150 °C to 350–450 °C, commonly associated with the updip and downdip limits of the seismogenic zone, extends along the plate interface over a downdip distance of 160 to 190 ± 20 km. We conclude that the updip limit of the seismogenic zone for the great megathrust earthquake of 1979 is associated with low-temperature (60–70 °C) processes. Our models also suggest that 60–70% of the two-fold decrease in measured heat flow from 3°N to 2.8°N is related to an abrupt southward increase in sedimentation rate in the trench. Such a change may potentially induce a landward shift of the 60–150 °C isotherms, and thus the updip limit of the seismogenic zone, by 10 to 20 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号