首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   1篇
  国内免费   3篇
测绘学   2篇
大气科学   16篇
地球物理   26篇
地质学   37篇
海洋学   38篇
天文学   8篇
综合类   2篇
自然地理   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   12篇
  2011年   15篇
  2010年   13篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有130条查询结果,搜索用时 62 毫秒
101.
The violent free-surface motions interacting with structures are investigated using the moving particle semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow simulation. In the present numerical method, a more efficient algorithm for Lagrangian moving particles is used for solving various highly nonlinear free-surface problems without using the Eulerian approach or the grid system. Therefore, the convection terms and time derivatives in the Navier–Stokes equation can be calculated more directly without any numerical diffusion, instabilities, or topological failure. In particular, the MPS method is applied to the simulation of liquid-entry and slamming problems, such as wet-drop (liquid–liquid collision) tests in an LNG tank and slamming loads (solid–liquid collision) on rigid plates with various incident angles. The numerical results are in good agreement with available experimental data.  相似文献   
102.
The spatial scales of mesoscale eddies are of importance to understand physio-biogeochemical processes in the East/Japan Sea. Chlorophyll-a concentration images from the Geostationary Ocean Color Imager (GOCI) revealed numerous eddies during the phytoplankton bloom in spring. These eddies were manually digitized to obtain geolocation information at the peripheries from GOCI images and then least-square fitted to each ellipse. The elliptic elements were the geolocation position of the eddy center, the rotation angle from due east, the eccentricity, the lengths of the semi-major and semi-minor axes, and the mean radius of the ellipse. The spatial scales of eddies had a mean radii ranging from 10 km to 75 km and tended to be smaller in the northern region. The scales revealed a linear trend of about ?7.26 km/°N as a function of the latitude. This tendency depended on the latitudinal variation of the internal Rossby radius of deformation, which originates from the substantial difference in the density structure of the water column. The scales from the sea surface temperature image were larger by 1.30 times compared to those from ocean color image. This implies that physical processes along the periphery of the eddy affect the nutrient dynamics.  相似文献   
103.
Stream water-use is essential for both agricultural and hydrological management and yet not many studies have explored its non-stationarity and nonlinearity with meteorological variables. This study proposed a deep-learning based model to estimate agricultural water withdrawal using hydro-meteorological variables, which projected the changes of agricultural water withdrawal influenced by climate change of future. The relationships between meteorological variables and stream water-use rate (WUR) were quantified using a deep belief network (DBN). The influences of precipitation, potential evapotranspiration, and monthly averaged WUR on the performance of the developed DBN model were tested. As a result, this DBN with potential evapotranspiration (PET) provided better performances than precipitation to estimate the WUR. The PET of multi-model scenarios for Representative Concentration Pathways 8.5 would be increased as time goes by, and thus leads to increase WUR estimated by DBN in three basins, located in South Korea during the future period. On the contrary, water availability expected to decrease compared to the current. Therefore, managing water-uses and improving efficiencies can be prepared for the change in agricultural water-use by climate change in the future.  相似文献   
104.
The Shinyemi and Gagok deposits, located in the Taebaeksan Basin, South Korea, display Zn–Pb mineralization along a contact between Cretaceous granitoids and Cambrian–Ordovician carbonates of the Joseon Supergroup. The Shinyemi mine is one of the largest polymetallic skarn‐type magnetite deposits in South Korea and comprises Fe and Fe–Mo–Zn skarns, and Zn–Cu–Pb replacement deposits. Both deposits yield similar Cretaceous mineralization ages, and granitoids associated with the two deposits displaying similar mineral textures and compositions, are highly evolved, and were emplaced at a shallow depth. They are classified as calc‐alkaline, I‐type granites (magnetite series) and were formed in a volcanic arc. Compositional variation is less in the Shinyemi granites and aplites (e.g., SiO2 = 74.4–76.6 wt% and 74.4–75.1 wt%, respectively) than in the Gagok granites and aplites (e.g., SiO2 = 65.6–68.0 wt% and 74.9–76.5 wt%, respectively). Furthermore, SiO2 vs K/Rb and SiO2 vs Rb/Sr diagrams indicate that the Shinyemi granitoids are more evolved than the Gagok granitoids. Shinyemi granitoids had been already differentiated highly in deep depth and then intruded into shallow depth, so both granite and aplite show the highly evolved similar chemical compositions. Whereas, less differentiated Gagok granitoids were separated into two phases in the last stage at shallow depth, so granite and aplite show different compositions. The amounts of granites and aplite are similar in the Shinyemi deposit, whereas the aplite appears in an amount less than the granite in the Gagok deposit. For this reason, the Shinyemi granitoids caused not only Fe enrichment during formation of the dolomite‐hosted magnesian skarn but also was associated with Mo mineralization in the Shinyemi deposit. Zn mineralization of the Gagok deposit was mainly caused by granite rather than aplite. Our data suggest that the variation in mineralization displayed by the two deposits resulted from differences in the compositions of their associated igneous intrusions.  相似文献   
105.
Oh  Jae-Young  Ryu  Bo-Mi  Yang  Hye-Won  Kim  Eun-A.  Lee  Jung-Suck  Jeon  You-Jin 《中国海洋湖沼学报》2019,37(3):909-917
Oxidative hair dyes containing p-phenylenediamine(PPD) are reported to induce an allergic reaction by promoting oxidative stress when absorbed through the skin. Despite the associated risk, these hair dyes remain popular owing to their convenience and sharpness of color. This makes it important to minimize the cytotoxicity and oxidative stress induced by PPD-containing hair dyes. Ecklonia cava extract has been evaluated in different studies for its protective effects against external stress in fibroblasts and keratinocytes. Our study was aimed at using in-vitro and in-vivo models to investigate the extract's effects on cytotoxicity of and oxidative stress induced by PPD-containing hair dyes. Analysis of CIEL*a*b* Color space was first used to determine the range of E. cava extract that would not interfere with the coloring ability of the dye upon addition. Subsequently, the set ranges of E. cava extract(5% and 7%) were added to the hair dye and their toxicity assessed by evaluating the viability of fibroblasts and keratinocytes. The effects on developmental phenotypes and induction of oxidative stress by hair dye were evaluated and compared with those of hair dyes containing different contents of E. cava extract using an in-vivo zebrafish model. Our results showed that E. cava extract in hair dye could significantly decrease the cytotoxicity and levels of oxidative stress caused by hair dyes containing PPD in both in-vitro and in-vivo models.These results suggest that the addition of 7% E. cava extract to 250 μg/mL hair dye does not interfere with the coloring ability of the dye while showing significant protective effects against the hair dye. The study proposes that the use of E. cava extract as an adduct to hair dyes containing PPD reduces the cytotoxicity and oxidative stress induced by these hair dyes.  相似文献   
106.
Phytoplankton size classes (hereafter, PSCs) were derived from satellite ocean color data using a present phytoplankton abundance-based optical algorithm in the northern Bering and southern Chukchi Seas to characterize the spatial and seasonal variations of the different PSC and investigate the contributions of small phytoplankton to the total phytoplankton biomass. The comparison results showed that the phytoplankton abundance-based method approach could reasonably classify the three PSCs (pico-, nano-, and micro phytoplankton). The satellite maps of the dominant PSCs were derived using long-term satellite ocean color data. The general spatial distribution showed that the large (micro-) phytoplankton were dominant in the coastal waters and the west side of the Bering strait, while the small size (nano- or pico-) phytoplankton were dominant in the open ocean waters. Nano- and microphytoplankton were dominant in May and October in most of the study area, while pico-phytoplankton were dominant in the summer months in the open ocean waters. The annual variation in small phytoplankton dominance had a strong positive relationship with the annual mean sea surface temperature (SST), which is consistent with the increasing dominance of small phytoplankton biomass as water temperature increases. Microphytoplankton have an apparent increasing trend in the southeastern Chukchi Sea but slightly decreasing trends in Chirikov and St. Lawrence Island Polynya (SLIP). In contrast, there were increasing trends in picophytoplankton in Chirikov and SLIP, which seems to be related to increasing annual SST. It is crucial to monitor changes in dominant groups of phytoplankton community in the Bering and Chukchi Seas as important biological hotspots responding to the recent changes in environmental conditions.  相似文献   
107.
Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea   总被引:1,自引:0,他引:1  
Geophysical surveys and geological studies of gas hydrates in the western deep-water Ulleung Basin of the East Sea off the east coast of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. The work included a grid of 4782 km of 2D multi-channel seismic reflection lines and 11 piston cores 5–8 m long. In the piston cores, cracks generally parallel to bedding suggest significant in-situ gas. The cores showed high amounts of total organic carbon (TOC), and from the southern study area showed high residual hydrocarbon gas concentrations. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data show areas of bottom-simulating reflectors (BSRs) that are associated with gas hydrates and underlying free gas. An important observation is the numerous seismic blanking zones up to 2 km across that probably reflect widespread fluid and gas venting and that are inferred to contain substantial gas hydrate. Some of the important results are: (1) BSRs are widespread, although most have low amplitudes; (2) increased P-wave velocities above some BSRs suggest distributed low to moderate concentration gas hydrate whereas a velocity decrease below the BSR suggests free gas; (3) the blanking zones are often associated with upbowing of sedimentary bedding reflectors in time sections that has been interpreted at least in part due to velocity pull-up produced by high-velocity gas hydrate. High gas hydrate concentrations are also inferred in several examples where high interval velocities are resolved within the blanking zones. Recently, gas hydrate recoveries by the piston coring and deep-drilling in 2007 support the interpretation of substantial gas hydrate in many of these structures.  相似文献   
108.
Prorocentrum minimum is a common bloomforming photosynthetic dinoflagellate found along the southern coast of Korea. To investigate the adaptive responses of P. minimum to high light stress, we measured growth rate, and generation of reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in cultures exposed to normal (NL) and high light levels (HL). The results showed that HL (800 μmol m?2 s?1) inhibited growth of P. minimum, with maximal inhibition after 7–9 days. HL also increased the amount of ROS and MDA, suggesting that HL stress leads to oxidative damage and lipid peroxidation in this species. Under HL, we first detected superoxide on day 4 and H2O2 on day 5. We also detected SOD activity on day 5 and CAT activity on day 6. The level of lipid peroxidation, an indicator of cell death, was high on day 8. Addition of diphenyleneiodonium (DPI), an NAD(P)H inhibitor, decreased the levels of superoxide generation and lipid peroxidation. Our results indicate that the production of ROS which results from HL stress in P. minimum also induces antioxidative enzymes that counteract oxidative damage and allow P. minimum to survive.  相似文献   
109.
110.
Urban surface and radiation processes are incorporated into a computational fluid dynamics (CFD) model to investigate the diurnal variation of flow in a street canyon with an aspect ratio of 1. The developed CFD model predicts surface and substrate temperatures of the roof, walls, and road. One-day simulations are performed with various ambient wind speeds of 2, 3, 4, 5, and 6 ms−1, with the ambient wind perpendicular to the north–south oriented canyon. During the day, the largest maximum surface temperature for all surfaces is found at the road surface for an ambient wind speed of 3 ms−1 (56.0°C). Two flow regimes are identified by the vortex configuration in the street canyon. Flow regime I is characterized by a primary vortex. Flow regime II is characterized by two counter-rotating vortices, which appears in the presence of strong downwind building-wall heating. Air temperature is relatively low near the downwind building wall in flow regime I and inside the upper vortex in flow regime II. In flow regime II, the upper vortex expands with increasing ambient wind speed, thus enlarging the extent of cool air within the canyon. The canyon wind speed in flow regime II is proportional to the ambient wind speed, but that in flow regime I is not. For weak ambient winds, the dependency of surface sensible heat flux on the ambient wind speed is found to play an essential role in determining the relationship between canyon wind speed and ambient wind speed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号