首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   30篇
  国内免费   3篇
测绘学   6篇
大气科学   14篇
地球物理   138篇
地质学   125篇
海洋学   41篇
天文学   61篇
综合类   7篇
自然地理   25篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   12篇
  2018年   18篇
  2017年   15篇
  2016年   27篇
  2015年   21篇
  2014年   24篇
  2013年   23篇
  2012年   29篇
  2011年   23篇
  2010年   20篇
  2009年   30篇
  2008年   20篇
  2007年   27篇
  2006年   22篇
  2005年   16篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1997年   4篇
  1996年   5篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
11.
12.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods.  相似文献   
13.
In order to understand the adsorption mechanism of metal atoms to semiconducting surfaces, we have studied, as a model system, the vapor phase adsorption of Ag, Au, and Cu on the (001) surface of molybdenite (MoS2) and the subsequent surface diffusion of these adsorbates. Our scanning tunneling microscopy (STM) images show that, depending on the type of metal atom that is adsorbed, islands of a characteristic size (2 nm for Ag, 8 to 10 nm for Cu, two distinct sizes of 2 nm and 8 to 10 nm for Au), shape (well rounded in the lateral extension) and thickness (one monolayer for Ag, 1 to 1.5 nm for Cu) are formed during the initial stages of deposition. Whole islands are observed to surface diffuse without loss of size or shape. Despite the relatively large size of the copper islands on molybdenite, these islands surface diffuse extensively, suggesting that the Cu-S interaction is weak. Surface diffusion is only hindered once individual islands start to coalesce. As copper islands accumulate, the size and shape of the original islands can still be recognized, supporting the conclusion that these characteristics are constant and that monolayer growth occurs by the aggregation of islands across the surface.The strength and the nature of the Ag-S(MoS2) bond were further investigated by using molecular orbital calculations, ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS). By applying quantum mechanical approaches using a two-dimensional periodic molybdenite slab and hexagonal MoS2 clusters of different sizes with metal atoms adsorbed to them, it is possible to calculate the electron transfer between the mineral surface and the metal atom as well as the adsorption energy as a function of surface coverage. In addition, we used the results from the quantum mechanical runs to derive empirical potentials that model the characteristics of the forces within the crystal, within the adsorbed islands, and the metal and mineral surface. The combination of quantum mechanical calculations and empirical force field calculations explain the electronic structure and the highest stability of Ag islands that have seven atoms in diameter, which exactly agrees with the size of experimentally observed islands. UPS results also suggest that a specific new state is formed (approximately 4.5 eV into the valence band) which may describe the Ag-S bond because it does not occur in pure silver or molybdenite.This study shows how the combination of microscopic (STM), spectroscopic (STS, UPS), compositional (X-ray photoelectron spectroscopy, XPS) and molecular modeling (quantum mechanical and empirical) techniques is a useful approach to understand the nature of the metal to sulfide bond. Further insights may be gained concerning the natural association of certain metals with sulfides.  相似文献   
14.
Volcanic rocks forming sills, dykes or lava flows may display a magnetic anisotropy derived from the viscous flow during their emplacement. We model a sill as a steady-state flow of a Bingham fluid, driven by a pressure gradient in a horizontal conduit. The magma velocity as a function of depth is calculated from the motion and constitutive equations. Vorticity and strain rate are determined for a reference system moving with the fluid. The angular velocity and the orientation of an ellipsoidal magnetic grain immersed in the fluid are calculated as functions of time or strain. Magnetic susceptibility is then calculated for a large number of grains with a uniform distribution of initial orientations. It is shown that the magnetic lineation oscillates in the vertical plane through the magma flow direction, and that the magnetic foliation plane changes periodically from horizontal to vertical. The results are compared with the magnetic fabric of Ferrar dolerite sills (Victoria Land, East Antarctica) derived from low-field susceptibility measurements.  相似文献   
15.
16.
17.
18.
Ionospheric delays compensation is a mandatory step for precise absolute and relative positioning of Low Earth Orbit Satellites (LEO) by GPS measurements. The most frequently used ionosphere model for real-time GPS-based navigation in LEO is an isotropic model proposed by Lear, which uses the Vertical Total Electron Content (VTEC) above the receiver and a mapping function for TEC evaluation along a given ray path. Based on significant assessed results available for ground-based GPS receivers, we propose the use of a different model relying on the thin shell assumption and a bilinear horizontal variation of the VTEC as a function of latitude and longitude in the shell. It is expected that this model is capable of better describing horizontal gradients in the ionosphere, thus improving ionospheric delay estimation, especially in intense ionospheric conditions. This model is referred to as Linear Thin Shell (LTS). LTS performance in estimating undifferenced and double-differenced ionospheric delays is checked by comparing measured and predicted delays computed using flight data from the GRACE mission. Results show that the LTS always outperforms the isotropic model, especially in case of high solar activity. Moreover, the LTS model provides a higher performance uniformity over a wide range of ionospheric delays, thus ensuring good performance in different conditions. The results obtained demonstrate that the LTS model improves the ionosphere delays estimation accuracy by 20 and 40% for undifferenced and double-differenced delays, respectively. This suggests the LTS model can effectively contribute to improving precision in LEO positioning applications.  相似文献   
19.
Using a combination of geophysical and geotechnical data from Storfjorden Trough Mouth Fan off southern Svalbard, we investigate the hydrogeology of the continental margin and how this is affected by Quaternary glacial advances and retreats over the continental shelf. The geotechnical results show that plumites, deposited during the deglaciation, have high porosities, permeabilities and compressibilities with respect to glacigenic debris flows and tills. These results together with margin stratigraphic models obtained from seismic reflection data were used as input for numerical finite element models to understand focusing of interstitial fluids on glaciated continental margins. The modelled evolution of the Storfjorden TMF shows that tills formed on the shelf following the onset of glacial sedimentation (ca. 1.5 Ma) acted as aquitards and therefore played a significant role in decreasing the vertical fluid flow towards the sea floor and diverting it towards the slope. The model shows that high overpressure ratios (up to λ ca. 0.6) developed below the shelf edge and on the middle slope. A more detailed model for the last 220 kyrs accounting for ice loading during glacial maxima shows that the formation of these aquitards on the shelf focused fluid flow towards the most permeable plumite sediments on the slope. The less permeable glacigenic debris flows that were deposited during glacial maxima on the slope hinder fluid evacuation from plumites allowing high overpressure ratios (up to λ ca. 0.7) to develop in the shallowest plumite layers. These high overpressures likely persist to the Present and are a critical precondition for submarine slope failure.  相似文献   
20.
The Mineo pallasite is characterized here for the first time. The only 42 g still available worldwide is part of the collection of the Department of Physics and Geology, University of Perugia. A multianalytical approach was used, joining field-emission scanning electron microscopy, Raman analysis, X-ray powder diffraction, electron-probe microanalysis, and laser ablation inductively coupled plasma mass spectrometry. Results highlighted that (1) the Mineo pallasite belongs to the Main Group pallasites; (2) the silicate component is essentially olivine, with no pyroxene component; (3) the olivine chemical composition varies in terms of both iron and trace elements; (4) the metal phase is essentially kamacite with the taenite mainly found in the plessite structure; (5) phosphide phases are present as schreibersite and barringerite. The observed compositional variability in olivines as well as their occurrence as both angular and rounded crystals suggest that the Mineo pallasite could have been derived from a large impact of a differentiated parent body with a larger solid body. The resulting pallasite conglomerate consists of the compositionally different olivines, likely coming from different areas of the same differentiated parent body, and the residual molten Fe-Ni.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号