首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   105篇
  国内免费   20篇
测绘学   48篇
大气科学   163篇
地球物理   621篇
地质学   820篇
海洋学   197篇
天文学   335篇
综合类   8篇
自然地理   149篇
  2022年   16篇
  2021年   26篇
  2020年   32篇
  2019年   35篇
  2018年   56篇
  2017年   54篇
  2016年   80篇
  2015年   57篇
  2014年   71篇
  2013年   141篇
  2012年   69篇
  2011年   109篇
  2010年   110篇
  2009年   109篇
  2008年   85篇
  2007年   102篇
  2006年   76篇
  2005年   67篇
  2004年   67篇
  2003年   63篇
  2002年   59篇
  2001年   28篇
  2000年   43篇
  1999年   32篇
  1998年   30篇
  1997年   32篇
  1996年   29篇
  1995年   36篇
  1994年   35篇
  1993年   16篇
  1992年   36篇
  1991年   34篇
  1990年   40篇
  1989年   27篇
  1988年   22篇
  1987年   18篇
  1986年   17篇
  1985年   31篇
  1984年   39篇
  1983年   31篇
  1982年   21篇
  1981年   33篇
  1980年   25篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1975年   15篇
  1974年   16篇
  1973年   17篇
  1971年   13篇
排序方式: 共有2341条查询结果,搜索用时 31 毫秒
61.
The Interior Basin of Gabon, created during the break-up between South America and Africa, displays thick Neoproterozoic to Aptian p.p. fluvio-lacustrine deposits overlain by Aptian to Albian marine facies. Rock–Eval analyses from outcrop and drillhole samples show high content in organic matter (up to 25%) related to types I and II. These intervals are encountered within Permian, Neocomian–Barremian as well as Aptian siliciclastic succession. They constitute fairly good to excellent potential petroleum source rocks, which are most probably at the origin of oil indices recognized both in drillholes and in surface.  相似文献   
62.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
63.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   
64.
Field investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin.  相似文献   
65.
Pollen analysis at two sites, correlated by the presence of the 190,000 yr-old Sheep Creek tephra, documents fluctuations in vegetation and climate consistent with this date and indicates that the records span marine oxygen isotope stage 7 and the stage 6/7 transition. Dawson Cut, near Fairbanks, Alaska, provides a 5.2-m-long pollen record of interglacial boreal forest succeeded by shrub tundra and then forest/tundra. Ash Bend, Stewart River, central Yukon, provides a 9.5-m-long record of interglacial boreal forest succeeded by forest/tundra, shrub tundra, and herbaceous tundra. The replacement of forest at both sites by more open or tundra vegetation indicates warm interglacial conditions giving way to cold and arid climate. It is not clear whether stage 7 was warmer than the present. The warm-cool-warm climate oscillation evident at both sites may correlate to Lake Baikal substages 7a, 7b, and 7c. Sheep Creek tephra fell on forest/tundra vegetation.  相似文献   
66.
67.
An Mw 5.9 earthquake occurred in the Lake Rukwa rift, Tanzania, on 1994 August 18, and was well recorded by 20 broad-band seismic stations at distances of 160 to 800 km and 21 broad-band stations at teleseismic distances. The regional and teleseismic waveforms have been used to investigate the source characteristics of the main shock, and also to locate aftershocks that occurred within three weeks of the main shock. Teleseismic body-wave modelling yields the following source parameters for the main shock: source depth of 25 ± 2 km, a normal fault orientation, with a horizontal tension axis striking NE-SW and an almost vertical pressure axis (Nodal Plane I: strike 126°–142°, dip 63°–66°, and rake 280°–290°; Nodal Plane II: strike 273°–289°, dip 28°–31°, and rake 235°–245°), a scalar moment of 4.1 times 1017 N m, and a 2 s impulsive source time function. Four of the largest aftershocks also nucleated at depths of 25 km, as deduced from regional sPmp–Pmp times. The nodal planes are broadly consistent with the orientation of both the Lupa and Ufipa faults, which bound the Rukwa rift to the northeast and southwest, respectively. The rupture radius of the main shock, assuming a circular fault, is estimated to be 4 km with a corresponding stress drop of 6.5 MPa. Published estimates of crustal thickness beneath the Rukwa rift indicate that the foci of the main shock and aftershocks lie at least 10 km above the Moho. The presence of lower-crustal seismicity beneath the Rukwa rift suggests that the pre-rift thermal structure of the rifted crust has not been strongly modified by the rifting, at least to depths of 25 km.  相似文献   
68.
69.
 Yucca Mountain, the proposed site for the high-level nuclear waste repository, is located just south of where the present water table begins a sharp rise in elevation. This large hydraulic gradient is a regional feature that extends for over 100 km. Yucca Mountain and its vicinity are underlain by faulted and fractured tuffs with hydraulic conductivities controlled by flow through the fractures. Close to and parallel with the region of large hydraulic gradient, and surrounding the core of the Timber Mountain Caldera, there is a 10- to 20-km-wide zone containing few faults and thus, most likely, few open fractures. Consequently, this zone should have a relatively low hydraulic conductivity, and this inference is supported by the available conductivity measurements in wells near the large hydraulic gradient. Also, slug injection tests indicate significantly higher pressures for fracture opening in wells located near the large hydraulic gradient compared to the opening pressures in wells further to the south, hence implying that lower extensional stresses prevail to the north with consequently fewer open fractures there. Analytical and numerical modeling shows that such a boundary between media of high and low conductivity can produce the observed, large hydraulic gradient, with the high conductivity medium having a lower elevation than the water table. Further, as fractures can close due to tectonic activity, the conductivity of the Yucca Mountain tuffs can be reduced to a value near that for the hydraulic barrier due to strain release by a moderate earthquake. Under these conditions, simulations show that the elevation of the steady-state water table could rise between 150 and 250 m at the repository site. This elevation rise is due to the projected shift in the location of the large hydraulic gradient to the south in response to a moderate earthquake, near magnitude 6, along one of the major normal faults adjacent to Yucca Mountain. As the proposed repository would only be 200–400 m above the present water table, this predicted rise in the water table indicates a potential hazard involving water intrusion. Received: 7 June 1996 / Accepted: 19 November 1996  相似文献   
70.
The distribution of redox sensitive elements (U, As,Sb, Mo and V) has been investigated in Lake Balatonand two man-made reservoirs (Lake Kis-Balaton-1 andKis-Balaton-2) built along the River Zala, the mainriver discharging into it. These elements underwentremoval in Lake Kis Balaton-2 (KB-2) during anoxicconditions (May and September).Similarities were found between the distributions ofdissolved As and Sb. Both elements had elevateddissolved concentrations in Lake Kis-Balaton-1 (KB-1)and in Lake Balaton in September. This increasedmobility could be due to a change of speciation (viareduction and the formation of methylated species).Such changes in speciation are well documented in theliterature and are generally enhanced during periodsof warmth and high primary productivity.Dissolved V and Mo distributions also showedsimilarities with higher concentrations in LakeBalaton than in other parts of the system.Although removal is not clearly detected from thedissolved concentrations, U, As, Sb and Mo aresignificantly enriched in the organic-rich sedimentsof Lake KB-1, while V is mainly associated with thealumino-silicate fraction. In Lake KB-1, theconcentrations of all elements in SPM (suspendedparticulate matter) are lower than in the depositedsediments (except for As) suggesting that enrichmentprocesses are occuring in the deposited sediments.Additionnally the cycling of As and Mo can be alsopartly controlled by uptake and scavenging processesin the water column, as suggested by the elevated Asand Mo concentrations observed in SPM seasonnally forAs in Lake KB-1 and at Z.mouth-1 station and for Mo atZ.mouth-1 station and Lake Balaton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号