首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   16篇
  国内免费   1篇
大气科学   8篇
地球物理   19篇
地质学   85篇
海洋学   11篇
天文学   11篇
自然地理   8篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   22篇
  2012年   13篇
  2011年   10篇
  2010年   10篇
  2009年   12篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有142条查询结果,搜索用时 46 毫秒
91.
Ground penetrating radar and single‐aliquot regenerative‐dose optically stimulated luminescence were used to determine the depositional environments and age of unconsolidated siliciclastic sediments near Apalachicola, Florida. Five direct‐push cores, five vibracores and 28 optically stimulated luminescence samples were collected, as well as 7 km of ground penetrating radar data. A new model of cosmic dose rate calculation, which removes the effect of a much younger aeolian cap, was utilized to calculate more representative optically stimulated luminescence ages. Five radar facies were identified based on reflector amplitude and orientation. The resulting data indicate that the Tertiary/Quaternary Shelly Sediments were deposited before marine isotope stage 6, the Quaternary Alluvium was deposited during marine isotope stage 6 and the Quaternary Beach Ridge and Dune was deposited during the marine isotope stage 5e sea‐level highstand, which peaked at approximately 2·5 m above present sea‐level in this area.  相似文献   
92.
93.
As the majority of the data on Quaternary sediments from the North Sea Basin are seismostratigraphical, we analysed the Elsterian Swarte Bank Formation, the Late Saalian Fisher Formation and the Late Weichselian (Dimlington Stadial) Bolders Bank Formation in order to determine genesis and provenance. The Swarte Bank Formation is a subglacial till containing palynomorphs from the Moray Forth and the northeastern North Sea, and metamorphic heavy minerals from the Scottish Highlands. The Fisher Formation was sampled from the northern and central North Sea. In the north, it is interpreted as a subglacial till, with glaciomarine sediments cropping out further south. These sediments exhibit a provenance signature consistent with the Midland Valley of Scotland, the Eocene of the North Sea Basin, the Grampian Highlands and northeast Scotland. The Bolders Bank Formation is a subglacial till containing palynomorphs from the Midland Valley of Scotland, northern Britain, and a metamorphic heavy‐mineral suite indicative of the Grampian Highlands, Southern Uplands and northeast Scotland. These data demonstrate that there was repeated glaciation of the North Sea Basin during the Middle and Late Pleistocene, with ice sheets originating in northern Scotland. There was no evidence for a Scandinavian ice sheet in the western North Sea basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
94.
95.
As research institutions seek to professionalize the workplace the use of metrics to assess an individual's performance is becoming increasingly commonplace. For academic researchers this can be achieved through the use of publication metrics such as the number of articles published and number of citations. For non-academic professionals, such as cartographers, field assistants or database programmers, they may have limited inclusion as authors and therefore their contribution to research outputs and outcomes is more difficult to ascertain. This paper outlines the current de facto standards for authorship and proposes some potential solutions for the formal recognition of contributions by professionals to research projects. This is presented through strategies currently being trialed at the Journal of Maps and through the example of map publication at the British Geological Survey.  相似文献   
96.
ERDÉLYI  RÓBERT 《Solar physics》1997,171(1):49-59
The present paper considers resonant slow waves in 1D non-uniform magnetic flux tubes in dissipative MHD. Analytical solutions are obtained for the Lagrangian displacement and the Eulerian perturbation of the total pressure for both static and stationary equilibrium states. From these analytical solutions we obtain the fundamental conservation law and the jump conditions for resonant slow waves in dissipative MHD. The validity of the ideal conservation law and jump conditions obtained by Sakurai, Goossens, and Hollweg (1991) for static equilibria and Goossens, Hollweg, and Sakurai (1992) for stationary equilibria is justified in dissipative MHD.  相似文献   
97.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   
98.
Sedimentological and structural geological data from two sites in southwest Ireland and Antarctica provide evidence for the formation of subglacial till by the brecciation and crushing of bedrock rafts. Up-sequence transitions, from undisturbed bedrock, to deformed bedrock, to crushed and brecciated bedrock, to massive matrix-supported till with far-travelled erratics, represent a process-form continuum of till production. Initially, bedrock fragments and rafts up to several metres in length are liberated from the substrate by glacitectonic thrusting and plucking. These rafts are then crushed to produce the matrix of a till. Such products are commonly referred to as comminution tills, although the original definition focused primarily on the second phase of the process (crushing of bedrock rafts and fragments) as well as abrasion of bedrock. Data from Ireland and Antarctica indicate that rafting of bedrock is an essential part of the process of till formation. This process is facilitated by weak sedimentary bedrock, which can be displaced along joints and bedding planes to form rafts that are then incorporated into the 'proto-till' prior to being crushed subglacially. Our field data suggest that bedrock failure and displacement of such rafts can occur to depths of 3 m. The occurrence of erratics in the uppermost part of the till demonstrates that the glacier effectively mixes far-travelled and local materials.  相似文献   
99.
100.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号