首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2657篇
  免费   157篇
  国内免费   33篇
测绘学   111篇
大气科学   229篇
地球物理   609篇
地质学   993篇
海洋学   227篇
天文学   403篇
综合类   14篇
自然地理   261篇
  2023年   15篇
  2022年   23篇
  2021年   66篇
  2020年   89篇
  2019年   79篇
  2018年   90篇
  2017年   108篇
  2016年   130篇
  2015年   94篇
  2014年   116篇
  2013年   165篇
  2012年   127篇
  2011年   173篇
  2010年   148篇
  2009年   153篇
  2008年   136篇
  2007年   99篇
  2006年   95篇
  2005年   97篇
  2004年   82篇
  2003年   80篇
  2002年   66篇
  2001年   51篇
  2000年   45篇
  1999年   33篇
  1998年   27篇
  1997年   32篇
  1996年   30篇
  1995年   28篇
  1994年   14篇
  1993年   16篇
  1992年   22篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   15篇
  1987年   19篇
  1986年   8篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2847条查询结果,搜索用时 31 毫秒
271.
Lack of age dates in the terrigenous Cenozoic sediments of the Duero and the Ebro sedimentary basins has complicated tecto-stratic correlation across the two basins. We tentatively synthesize a range of existing studies and new data to construct a rough general paleogeography throughout Upper Cenozoic times. The more extensive erosion of the Ebro has been previously attributed to the earlier moment of opening. We tentatively analyse lithostratic data to conclude that the lower knick-point and different lithologies have also contributed to the deeper erosion in the Ebro Basin. We conclude from lithostratic data and field evidence that the W half of the Rioja was part of the Duero in earlier times and that the escarpment retreated westward through the Rioja in four subsequent episodes of erosion. The tilt of the NW Duero is a consequence of isostatic rebound to this erosion.  相似文献   
272.
Pronounced climate warming during the past century has been well documented in high-latitude regions. Nonetheless, considerable heterogeneity exists in northern climate trends. We examined the roles of cryospheric landscape and lake depth in modulating the rate and magnitude of local climate responses through a paleolimnological study of lakes from southwest Yukon, Canada. By sampling lakes at varying distances from the Wrangell-St. Elias ice fields, we hypothesized that, for lakes of similar maximum depth, sites closest to the ice fields would be relatively complacent in terms of their chironomid and diatom assemblage changes over the past ~200 years. This hypothesis is based on the moderating effect of the glaciers on local climate, which would be most pronounced in the lakes nearest to the ice fields. However, given the known ecological differences between deep and shallow lakes, we further predicted that, for a given distance from the ice fields, a sediment record from a shallower lake would show the greatest change in stratigraphic subfossil assemblages. Because of the complicated shape of the ice fields, we applied the longitude for each site (which decreases from west to east) to approximate the proximity of our study lakes to the ice fields. Consistent with our predictions, we observed a space-transgressive pattern in the chironomid assemblage turnover that was associated with their proximity to the ice fields (r = ?0.75, P = 0.034, n = 8) across lakes of similar depth (mean maximum depth ± 1, SE = 18.1 ± 2.6 m). Considering a broader network of lakes that represented a greater range in maximum depth (4.9–29 m), we found that differences in subfossil chironomid assemblages between the modern and ca. AD 1800 sediment layers were strongly related to lake depth (r = ?0.77, P < 0.001, n = 15), but failed to detect a significant relationship with latitude or longitude (i.e. our proxy for proximity to the ice fields). Similarly, our comparative high-resolution analyses of two lakes with distinct lake morphometries, but similar proximities to the ice fields, demonstrated the predicted contrasting pattern: we observed pronounced post-1880 changes in the biotic assemblages in the shallow lake and a muted and delayed response (i.e. ~1970s) in the deeper lake. Our findings confirm that cryospheric landscape features can strongly modulate regional climate. Furthermore, our work shows that investigators need to be conscious of how climate change affects the structure and functioning of lakes of different typologies, which influences the way in which paleoclimate signals are recorded and interpreted.  相似文献   
273.
274.
Cognitive regions are regions in the mind, reflecting informal ways individuals and cultural groups organize their understanding of earth landscapes. Cognitive region boundaries are typically substantially vague and their membership functions are substantially variable – the transition from outside to inside the region is imprecise or vague, and different places within the region are not equally strong or clear as exemplars of the region. Methods for assessing and cartographically depicting cognitive regions, as with other vague geographic regions, have traditionally implied an inappropriate level of boundary sharpness and membership uniformity, such as when boundaries are mapped as precise lines. Research in recent decades has explored methods for assessing and depicting boundary vagueness and membership variability, either within or across individuals, but has still assumed homogeneity and regularity in the vagueness and variability. In this article, we present two studies that assess the cognitive regions of ‘Northern’ and ‘Southern’ California, and, for comparison, ‘Northern’ and ‘Southern’ Alberta. The first study uses a standard boundary-drawing task; the second uses a novel task in which participants rate cells of a high-resolution grid laid over an outline map. This technique allows us to assess and depict vagueness and nonuniformity that is heterogeneous and irregular across different areas. Differences in the conceptualization of ‘Northern’ and ‘Southern’ regions in California, as compared to those in Alberta, point to thematic influences on cognitive regions in California but not in Alberta. As is often true with cognitive regions, Northern and Southern California are about attitude, not just latitude.  相似文献   
275.
The spider crab Maja brachydactyla is an important commercial species in Europe and supports intensive fisheries in the NE Atlantic. A field survey was performed to assess long‐term and consecutive interannual (2005–2010) variation of the biochemical composition of newly hatched larvae of M. brachydactyla. Larval biochemical profiles differed significantly among years, with pronounced differences being recorded in 2010. Differences among batches of newly hatched larvae were mainly explained by the contribution of triacylglycerols and, to a lesser degree, by protein and lipid content. The use of different nutrition indices is discussed. The biochemical composition of newly hatched larvae from M. brachydactyla was highly variable, even though surveyed broodstock was obtained from the same local population and was always sampled during the same season. The unpredictable biochemical profiles of newly hatched larvae may condition their survival and recruitment. This largely overlooked aspect of larval variability should be considered in future fisheries management strategies and captive production of marine organisms that still rely on wild seeds.  相似文献   
276.
Mud volcanoes (MVs) are abundant along the eastern Mediterranean subduction zones, recording mud breccia extrusion over long timescales (106 years), but to date relatively few have been recognised in the northern Ionian Sea on the Calabrian accretionary prism (CAP). In the present study, the seafloor distribution and recent activity of MVs is investigated across a 35,600 km2 sector of the CAP using a regional acoustic dataset (multibeam bathymetric and backscatter imagery, integrated with subbottom profiles) locally ground-truthed by sediment cores. A total of 54 MVs are identified across water depths of 150–2,750 m using up to four geophysical criteria: distinctive morphology, high backscatter, unstratified subbottom facies and, in one case, a hydroacoustic flare. Fourteen MVs are identified from 3–4 criteria, of which five have been previously proven by cores containing mud breccia beneath up to 1.6 m of hemipelagic sediments (Madonna dello Ionio MVs 1–3, Pythagoras MV and the newly named Sartori MV), while nine others are identified for the first time (Athena, Catanzaro, Cerere, Diana, Giunone, Minerva, ‘right foot’, Venere 1 and 2). Forty other as yet unnamed MVs are inferred from 1–2 geophysical criteria (three from distinctive morphology alone). All but one possible MV lie on the inner plateau of the CAP, landwards of the Calabrian Escarpment in a zone up to 120 km wide that includes the inner pre-Messinian wedge and the fore-arc basins, where they are interpreted to record the ascent from depth of overpressured fluids that interacted with tectonic structures and with evaporitic or shale seals within the fore-arc basins. The rise of fluids may have been triggered by post-Messinian out-of-sequence tectonism that affected the entire pre-Messinian prism, but Plio-Quaternary sedimentation rates and depositional styles support the inference that significant mud volcanism has taken place only on the inner plateau. Sedimentation rates across the CAP applied to a 12 khz sonar detection depth of 225 cm imply that all MVs with backscatter signatures (50 of 54) have erupted mud breccias within the last 56 ka, and within the last 12.5 ka in the fore-arc basins. Ages of eruption estimated from the depth of cored mud breccias at five MVs, and a seismo-stratigraphic relationship at a sixth, indicate episodes at the last glacial maximum ca. 20 ka BP and during the postglacial period. Eruptive episodes within the Calabrian MV province constitute recurrent geohazards, separated by longer periods of quiescent (subdued) fluid seepage that are likely to support gas hydrate formation and chemosynthetic ecosystems.  相似文献   
277.
For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.  相似文献   
278.
A fully coupled regional ocean-atmosphere model system that consists of the regional spectral model and the regional ocean modeling system for atmosphere and ocean components, respectively, is applied to downscale the present climate (1985–1994) over California from a global simulation of the Community Climate System Model 3.0 (CCSM3). The horizontal resolution of the regional coupled modeling system is 10 km, while that of the CCSM3 is at a spectral truncation of T85 (approximately 1.4°). The effects of the coupling along the California coast in the boreal summer and winter are highlighted. Evaluation of the sea surface temperature (SST) and 2-m air temperature climatology shows that alleviation of the warm bias along the California coast in the global model output is clear in the regional coupled model run. The 10-m wind is also improved by reducing the northwesterly winds along the coast. The higher resolution coupling effect on the temperature and specific humidity is the largest near the surface, while the significant impact on the wind magnitude appears at a height of approximately 850-hPa heights. The frequency of the Catalina Eddy and its duration are increased by more than 60 % in the coupled downscaling, which is attributed to enhanced offshore sea-breeze. Our study indicates that coupling is vital to regional climate downscaling of mesoscale phenomena over coastal areas.  相似文献   
279.
Temperature response to future urbanization and climate change   总被引:2,自引:0,他引:2  
This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990–2009) and future (2040–2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.  相似文献   
280.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号