首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   20篇
  国内免费   7篇
测绘学   12篇
大气科学   29篇
地球物理   116篇
地质学   183篇
海洋学   34篇
天文学   56篇
综合类   4篇
自然地理   29篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   13篇
  2018年   18篇
  2017年   14篇
  2016年   16篇
  2015年   14篇
  2014年   25篇
  2013年   27篇
  2012年   15篇
  2011年   23篇
  2010年   26篇
  2009年   31篇
  2008年   18篇
  2007年   18篇
  2006年   22篇
  2005年   11篇
  2004年   10篇
  2003年   16篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1974年   4篇
  1966年   2篇
  1965年   1篇
排序方式: 共有463条查询结果,搜索用时 31 毫秒
411.
If anatexis takes place in the presence of an immiscible volatile-rich fluid phase, the behaviour of a trace element depends not only on partition coefficients Di ? between mineral i and silicate liquid, but also on coefficients Di f between mineral i and fluid. The limited experimental data available, as well as theoretical arguments, suggest that for common minerals these coefficients differ, in some cases (REE) notably.Theory has been developed to permit calculation of concentration variations with the fraction F of rock melted, if D-values are known. In its present state this theory neglects the influence of T, P and composition variations in liquid and fluid on the D-values: if such variations can be expressed as functions of F, appropriate modifications can be made. The theory also neglects the effects of T and P on the solubility of fluid in liquid and the resulting modifications to phase petrology, by assuming simply that a given mass of rock melts in the presence of a mass proportion v of fluid. By choosing different values of v, from 0 (dry melting) to 100 (large fluid excess), the response of the trace element concentrations can be followed, beginning with concentration co in the unmelted rock. Such treatment is highly idealised, but serves to indicate some limits on what can occur.  相似文献   
412.
Growth and stable isotope composition of stalagmites are affected by climate changes. To understand the underlying mechanisms, we developed a time dependent multi-box model that describes stalagmite growth and stable isotope fractionation of carbon under disequilibrium conditions. The model takes variations of the drip interval, temperature and the amount of mixing between the impinging drops and the solution on top of the stalagmite into account, which allows to quantify the influence of these parameters. To calculate the variations of δ13C, the multi-box model was calibrated by comparison with an existing growth model. The results show that drip interval, temperature and the mixing coefficient do have a significant influence on δ13C. However, considering the higher natural variability of the drip interval, this parameter might have the largest influence.  相似文献   
413.
The forcing of a hydrologic model (ABC) by both observed and simulated precipitation from a regional climate model (MAR) has been performed over the Sirba watershed (39,000 km2) located in the Sahelian region. Two aspects have been more specifically examined: the spatial and temporal representations of precipitation. The comparison between simulated and observed discharges—using observed rainfall datasets as forcing of the hydrologic model—has shown that the representation of daily precipitation (which is mainly convective in the Sahelian region) was not sufficiently accurate to correctly simulate the hydrologic response of the watershed. Since this response drives the soil water budget and consequently the amount of evaporation in forthcoming coupling experiments, it is thus necessary to develop more realistic infra-daily precipitation associated with convective events. A new temporal disaggregation scheme has been then developed. Considering observed as well as simulated precipitation fields, this method has significantly improved the simulated discharge at the catchment outlet. The major role played by the temporal component compared to spatial component of the precipitation has been then underlined. In addition, the present study shows the unsuitability of the simulated precipitation from the RCM to directly force a hydrologic model at infra daily timescale even if the cumulative amount and the main features of the precipitation seasonal cycle are well simulated.  相似文献   
414.
Recently, alternative models to estimate the age of diagenetically altered fossil reef corals have been presented based on either redistribution of U or its immediate daughters 234Th and 230Th. Here, we present three methods to estimate the uncertainty of ages derived using an amended version of our coral isochron method [Scholz et al., 2004. U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters 218, 163–178], which is based on addition/loss of U. The obtained uncertainties are substantially larger than those previously published and should, in general, be more reliable. The isochron method yields larger uncertainties than alternative models based on Th redistribution due to -recoil processes. However, comparison of model open-system ages based on such redistribution of U-series daughters for different sub-samples from an individual coral specimen shows that the smaller errors derived with these models cannot account for the observed variability. We recognise that none of the available models is applicable to all corals, probably reflecting different diagenetic processes even in different sub-samples from one coral specimen. To better understand the diagenetic processes and precisely constrain the uncertainties of the ages derived from diagenetically altered corals, the application of all available models is recommended.  相似文献   
415.
416.
We have experimentally studied the process of bubble coalescence in rhyolite and phonolite melts of natural composition. The experiments involved decompression of water-saturated melts equilibrated at pressures and temperatures from 100 to 150 MPa and 775 to 840 °C in vertically oriented, rapid-quench capable, cold seal pressure vessels. One type of experiments (rhyolite MCR-100, 120, 150 and phonolite LSP-120 series') approximates a “static” bubble coalescence case, where we held the decompressed samples for ∼5 seconds to 4320 minutes (3 days) before quenching. The second type (rhyolite LPC-100 series) replicates an “expanding” bubble coalescence environment, where we continually decompressed the experiments at a rate of 0.5 MPa/s, examining samples quenched at ending pressures between 10 and 80 MPa. Our “static” case (MCR-100, 120, and 150, and LSP-120) results show significant increases in the modal bubble sizes and in the sizes of the largest bubbles, corresponding to measurable broadening in the size distributions. Their bubble number densities (NV) decrease as a function of hold time at their final pressures (PF), and can be fit well by power law functions. Our “expanding” case experiments (LPC-100) show a significant drop in NV during the duration of the experiments that can be fit by an exponential equation as NV vs. either time or PF. Average estimates of bulk coalescence rates indicate a ∼1 order of magnitude drop in NV for “static” case rhyolites in a 2-3 day period, and ∼2 orders of magnitude for phonolites within a 3 day period. Despite a ∼2 order of magnitude difference in viscosity, coalescene in the phonolite is only slightly faster than the rhyolite. The “expanding” case experiments show a ∼1 order of magnitude drop in NV over 180 seconds. Thus, NV's decrease 4 orders of magnitude faster in expanding vs. static bubbly rhyolite melts. Our results imply that significant bubble coalescence can occur in rhyolite magmas at relatively fast (∼20 m/s) ascent rates in the conduit. Thus, bubble interconnectivity, leading to high permeability, is possible during ascent. Bubble coalescence may occur during second boiling in magma bodies that are stalled in the crust. The timescales over which this occurs is much faster than the estimated rise rates for bubbles to reach the top of the magma chamber.  相似文献   
417.
The nucleation of H2O bubbles in magmas has been proposed as a trigger for volcanic eruptions. To determine how bubbles nucleate heterogeneously in silicate melts, experiments were carried out in which high-silica rhyolitic melts were hydrated at 740-800°C and 50-175 MPa, decompressed by 20-70 MPa, and held at the lower pressures for ≥10 s before being quenched. The hydration conditions were subliquidus, and all samples contain blocky magnetite + needle-shaped hematite ± plagioclase. Magnetite is abundant at 800°C and high pressures, whereas hematite becomes more abundant at lower temperatures and pressures. Bubbles nucleated in a single event in all samples, with the number density (NT) of bubbles varying between 2 × 107 and 1 × 109 cm−3. At low degrees of supersaturation, one to a few bubbles nucleate on faces of magnetite, but at medium to high degrees of supersaturation, multiple bubbles nucleate on single magnetite grains. On hematite, one to a few bubbles nucleated at the ends of the needle-shaped crystals at medium supersaturations, but formed along their entire lengths at high supersaturations. NT increases as water diffusivity decreases, indicating that the number of bubbles nucleated is influenced by their growth, which depletes the melt with respect to H2O and lowers supersaturation. If volcanic eruptions are triggered by bubble formation in magmas stored in shallow-level magma chambers, then the supersaturations needed for heterogeneous nucleation suggest that only small amounts of crystallization are needed, whereas homogeneous nucleation is unlikely to trigger eruptions.  相似文献   
418.
419.
A Chemical Equilibrium Model for Natural Waters   总被引:7,自引:0,他引:7  
This paper reviews the present status of the Pitzer chemical equilibrium model, which can be used to characterize the one-atmosphere activity coefficients of ionic and non-ionic solutes in natural waters as a function of temperature and ionic strength. The model considers the ionic interactions of the major seasalt ions (H, Na, K, Mg, Ca, Sr, Cl, Br, OH, HCO3, B(OH)4, HSO4, SO4, CO3, CO2, B(OH)3, H2O) and is based on the 25 °C model of Weare and co-workers. The model has been extended by a number of workers so that reasonable estimates can be made of the activity coefficients of most of the major seasalt ions from 0 to 250 °C. Recently coefficients for a number of solutes that are needed to determine the dissociation constants of the acids from 0 to 50 °C (H3CO3, B(OH)3, H2O, HF, HSO 4 - , H3PO4, H2S, NH 4 + etc.) have been added to the model. These results have been used to examine the carbonate system in natural waters and determine the activity of inorganic anions that can complex trace metals. The activity and osmotic coefficients determined from the model are shown to be in good agreement with measured values in seawater. This model can serve as the foundation for future expansions that can examine the activity coefficient and speciation of trace metals in natural waters. At present this is only possible from 0 to 50 °C over a limited range of ionic strengths (<1.0) due to the limited stability constants for the formation of the metal complexes. The future work needed to extend the Pitzer model to trace metals is discussed.  相似文献   
420.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号