首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   9篇
测绘学   3篇
大气科学   4篇
地球物理   52篇
地质学   66篇
海洋学   16篇
天文学   20篇
综合类   2篇
自然地理   13篇
  2022年   4篇
  2021年   3篇
  2020年   7篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   14篇
  2009年   13篇
  2008年   13篇
  2007年   10篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1970年   2篇
  1944年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
11.
12.
Preliminary results of a multi-narrow beam survey of the Hellenic trench system, in the Eastern Mediterranean, are presented. The southwestern Ionian branch is divided in small basins, partly filled with Pleistocene sediments. The morphology suggests that the basins are deformed by a compressional stress acting roughly perpendicularly to the trench along N50°E. This direction is the direction of the regional slip vector of the shallow thrust-type earthquakes. The structure of the southeastern Pliny-Strabo branch is quite different. Narrow en-e´chelon slots, oriented N40°E, have been mapped within the main troughs oriented N60°E. The regional earthquake slip vector is also oriented along N40°E. We conclude that the Hellenic trench system is an active subduction system, dominated by thrust along the Ionian branch and by transform motion along the Pliny-Strabo branch.  相似文献   
13.
The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds.Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ∼1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium in environments where amino acids were already highly concentrated, but that minerals may not significantly alter the expected solution-phase equilibria. Thus the abiotic synthesis of long peptides may have required activating agents, dry heating at higher temperatures, or some form of phase separation.  相似文献   
14.
The use of slickline distributed temperature sensing (SL-DTS) technology is becoming widespread due to its ease of operation and ability to acquire real-time multiple temperature traces inside the wellbore. Injection of treated acid gas (TAG)—a mixture of CO2 and H2S—into geologic formations has become an attractive technical and economic option for oil and gas producers and processors who are faced with regulations concerning excess sulfur and greenhouse gas emissions. Acid gas injection (AGI) into geologic formations is more economical and more flexible in dealing with varying TAG compositions than sulfur recovery units (SRUs) using the Claus process. SRUs do not achieve air quality standards and have high operation and maintenance costs. In addition, there is low demand for sulfur and sulfur disposal costs are high. The results of the analysis of SL-DTS data acquired in conjunction with step rate and pressure falloff (PFO) tests are presented in this paper. These tests were conducted to evaluate the injection potential of geologic formations. The injection zone consisted of a carbonate formation characterized by Karst features, vugs, and natural fractures. The SL-DTS data during the initial injection flow rate for the step rate test (SRT) indicated that high permeability zones accepted fluid at lower injection rates. An increasing number of discrete zones began to accept fluid as the injection rate was increased. The results of the SRT provided the fracture pressure of the formation. This information was used to design an AGI program that would avoid fracturing the formation while allowing for the required volume of TAG to be injected. The results of the PFO test provided information on the reservoir pressure and permeability and also indicated the presence of one or more hydraulic fractures. This case study of SL-DTS measurements made during a SRT and a PFO test for the design of an AGI well provides valuable insights into the potential of DTS technology and its use in AGI and carbon capture/sequestration (CCS) operations. Its findings could be applied to analyze injection potential of geological formations not only for AGI projects but also for CCS, and CO2 enhanced oil recovery opportunities.  相似文献   
15.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   
16.
In this paper we present the results of the past two years observations on the galactic microquasar LS I +61 303 with the Whipple 10 m gamma-ray telescope. The recent MAGIC detection of the source between 200 GeV and 4 TeV suggests that the source is periodic with very high energy (VHE) gamma-ray emission linked to its orbital cycle. The entire 50-hour data set obtained with Whipple from 2004 to 2006 was analyzed with no reliable detection resulting. The upper limits obtained in the 2005–2006 season covered several of the same epochs as the MAGIC Telescope detections, albeit with lower sensitivity. Upper limits are placed on emission during the orbital phases of 0→0.1 and 0.8→1, phases which are not included in the MAGIC data set.   相似文献   
17.
Sulfate and selenate adsorption on iron oxides are important reactions in natural systems under a very wide range of pH values, ionic strengths, and electrolyte compositions. Under such conditions, spectroscopic and theoretical calculations have demonstrated the potential importance of a variety of surface species. Understanding the variations in the surface speciation of these oxyanions is fundamental to prediction of their partitioning between minerals and aqueous solutions. In the present study, published experimental spectroscopic and theoretical molecular evidence of the identity of sulfate/selenate surface species are integrated with a surface complexation model consistent with a wide variety of experimental adsorption, surface titration, and proton coadsorption data to define the surface speciation of sulfate and selenate on iron oxides under a wide range of conditions. The analysis was carried out with the extended triple layer model (ETLM) taking into account the electrostatics of water dipole desorption during ligand exchange reactions. On seven out of eight goethites studied, sulfate and selenate surface reactions can be represented by the formation of a monodentate-mononuclear inner-sphere and a bidentate-binuclear outer-sphere (or H-bonded) species according to
  相似文献   
18.
Planetary, stellar and galactic physics often rely on the general restricted gravitational $N$ -body problem to model the motion of a small-mass object under the influence of much more massive objects. Here, I formulate the general restricted problem entirely and specifically in terms of the commonly used orbital elements of semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre, and true anomaly, without any assumptions about their magnitudes. I derive the equations of motion in the general, unaveraged case, as well as specific cases, with respect to both a bodycentric and barycentric origin. I then reduce the equations to three-body systems, and present compact singly- and doubly-averaged expressions which can be readily applied to systems of interest. This method recovers classic Lidov–Kozai and Laplace–Lagrange theory in the test particle limit to any order, but with fewer assumptions, and reveals a complete analytic solution for the averaged planetary pericentre precession in coplanar circular circumbinary systems to at least the first three nonzero orders in semimajor axis ratio. Finally, I show how the unaveraged equations may be used to express resonant angle evolution in an explicit manner that is not subject to expansions of eccentricity and inclination about small nor any other values.  相似文献   
19.
We have performed 2D bulge/bar/disc decompositions using g , r and i -band images of a representative sample of nearly 1000 galaxies from the Sloan Digital Sky Survey. We show that the Petrosian concentration index is a better proxy for the bulge-to-total ratio than the global Sérsic index. We show that pseudo-bulges can be distinguished from classical bulges as outliers in the Kormendy relation. We provide the structural parameters and distributions of stellar masses of ellipticals, classical bulges, pseudo-bulges, discs and bars, and find that 32 per cent of the total stellar mass in massive galaxies in the local universe is contained in ellipticals, 36 per cent in discs, 25 per cent in classical bulges, 3 per cent in pseudo-bulges and 4 per cent in bars. Pseudo-bulges are currently undergoing intense star formation activity and populate the blue cloud of the colour–magnitude diagram. Most (though not all) classical bulges are quiescent and populate the red sequence of the diagram. Classical bulges follow a correlation between the bulge Sérsic index and bulge-to-total ratio, while pseudo-bulges do not. In addition, for a fixed bulge-to-total ratio, pseudo-bulges are less concentrated than classical bulges. Pseudo-bulges follow a mass–size relation similar to that followed by bars, and different from that followed by classical bulges. In the fundamental plane, pseudo-bulges occupy the same locus as discs. While these results point out different formation processes for classical and pseudo-bulges, we also find a significant overlap in their properties, indicating that the different processes might happen concomitantly. Finally, classical bulges and ellipticals follow offset mass–size relations, suggesting that high-mass bulges might not be simply high-mass ellipticals surrounded by discs.  相似文献   
20.
Xu  Guowen  Gutierrez  Marte  He  Chuan  Meng  Wei 《Acta Geotechnica》2020,15(8):2277-2304
Acta Geotechnica - A new numerical approach based on the particle discrete element method (PDEM) is developed to investigate the mechanical behavior of transversely isotropic rocks with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号